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CHAPTER ONE

INTKODUCTION

1.1. Overview and Previous Work

Traditional surveillance and communication systems use centralized
signal processing for the detection, identification and tracking of
targets. In these systems, the received observations are transmitted
to the central processor (detector) where classical hypothesis testing
procedures are employed for signal processing [1,2]. The hypothesis
testing procedures can be classified into two maior categories
depending on the test duration or the number of observations to be
processed. 1In fixed-sample-size (¥SS) hypothesis testing procedures a
fixed number of observations are taken before the test can be executed.
The sample size is determined by the performance level to be achieved.
A variety of approaches such as the Bayesian approach and the Neyman-
Pearson approach can be employed in FSS detection. Contrary to the FSS
procedures, the sequential procedures have a random test duration
depending on the actual okservations and the test thresholds. These
procedures provide a significant advantage over FSS test procedures in
terms of test length. For specified values of the error probabilities
o and B (where o and B are the error probabilities of the first and
second kind, i.e., probabilities of false alarm and miss respectively),
and known probability distributions, the sequential procedures, on the
average, require significantly less number ¢f cbservations than the FSS
test procedures (3-5]. The saquential probability ratio test (SPRT) of

Wald [1,5] is known to be optimal among all sequential test procedures.




Distributed detection systems have become an attractive alternative to
the convential centralized detecticn systems for processing large
quantities of data received from physically distributed sensors. The
decomposition of processing is essential for controlling the complexity of
data processing and to meet the needs for real-time results. Moreover,
limited communicaticn is often necessary due to physical bandwidth
constraints combined with the desire to limit or reduce the effect of
possible jamming, thereby increasing the system survivability. Distri-
buted processing is the natural way to handle a situation in which
various sensors with different sensing techniques, such as sonic, micro-
wave and infra-red sensors are employed. These decentralized systems
exhibit the advantages of higher reliability, survivability, and shorter
decision time than their centralized counterparts (7,8].

Distributed FSS detection systems have received an increasing interest
over the past several years. Different approaches have been used to
analyze these systems. Tenney and Sandell (7] introduced distributed
detection using a fixed fusion center and used the Bayesian approach to
optimize the local detectors. Chair and Varshney (9] fixed the local
detectors and used the Bayesian approach to optimize the fusion center.
Hoballah and Varshney [10] using the Bayesian approach combined the
results in (7,9] and optimized the entire distributed detection system.
Reibman and Nolte [11] showed how to use numerical approaches to find
globally optimum system for a particular detection problem. Srinivasan
(12] considered the Neyman-Pearson criterion for system cptimization. He
fixed the fusion center and optimized the local detectors. Hoballah and

Varshney [13] jointly optimized the entire distributed detection system

28]




using the Neyman-Pearson criterion. Thomopoulos and Okello [l14) considered
a distributed system in which the primary detector communicates with the
consultant detector only when the primary detector can not decide on one
of the hypotheses. The majority of the distributed detection systems
{7-13) allow the transmission of only one-bit decisions (hard decisions)
from local detectors to the fusion centexr. However, some distributed
detection systems [15-17] allow the transmission of multi-bit local
decisions (soft decisions) to the fusion center. These soft decision
distributed detection systems have the advantage of improved performance
over their hard decision counterparts at the expense of increased
communication (channel capacity) as well as increased analysis and
processing conmplexity.

The decentralized sequential detection problem has been investigated
in (18-20}. 1In [18], Teneketzis formulated and solved a decentralized
version of the Wald problem with two decision makers. In his model, each
detector was given the flexibility of either stopping and making a de~
cision or continuing to the next stage. The coupling between the two
local detectors was introduced through a common cost function and the
objective was to minimize the cost. He showed that the person-by-person
optimal policies of the local detectors are described by thresholds which
are coupled. More specifically, the thresholds of detector 1 at any stage
depend on the thresholds of detector 2 at all stages. For a two-detector
N-stage detection system, he showed that the thresholds are determined by
solving a set of 4N-2 nonlinear algebraic equations in 4N-2 unknowns.
Bashemi and Rhodes [19] examined a two-step, two-detector, sequential
hypothesis testing problem with data fusion center. They also discussed

its straightforward extension to a decentralized multi-stage sequential




detection problem. Their model is different from the one examined in
(18). 1In ([19], the sequential test is carried out at the fusion center
and local detectors have no control over the termination of the test.
Chair et al. [20] obtained a decentralized version of the SPRT for the
same model as in [18]. However, they used the Neyman-learson approach
for the solution of the problem. 1In [18-20], the computation of thresh-
olds was quite complicated due to the fact that the thresholds are
coupled at all stages. Moreover, the emphasis was solely on the computa-
tion of the optimal thresholds. The performance of the schemes was
totally ignored. Therefore, it is desirable to explore alternate struc-
tures and schemes for distributed sequential detection where the thresh-
olds are easier to obtain, and the performance of the schemes can be
evaluated.

In this report, we consider alternate sequential detection schemes
and evaluate their performance. The sequential procedures presented
here are generalizations of the classical sequential procedures [1,21-
27] to a distributed environment. Two important functions frequently
used to evaluate the performance of an SPRT, namely the average sample
number (ASN) function, and the operating characteristic (0OC) function,
are evaluated for the various schemes considered. These schemes have
the desired advantages of distributed detection system over their
centralized counterparts, and, in addition, their performance is easier

to evaluate than the schemes in [18-20].

1.2. Report Organization

In this report, we consider some distributed sequential detection

systems and evaluate their performance. Most of the distributed



systems considered here are parametric where an exact knowledge of the
obgervation statistics is assumed. The only exception is the non-
parametric distributed system considered in Chapter Seven, where the
observation statistics are not known completely.

In Chapter Two, we describe the sequential probability ratio test
(SPRT) of Wald [1l]. Concepts such as average sample number (ASN) func-
tion and operating characteristic (0C) function, which are essential in
evaluating the performance of sequential test are introduced in some de-
tail. Alternate approaches to obtain the exact expressions [28,29] cf
the OC and ASN functions are also described.

In Chapter Three, an SPRT based on quantized multi-sensor observa-
tions is described and its performance is evaluated. It is shown that
for the same level of performance, the ASN decreases monotonically by
increasing the number of local sensors. The issue of optimal quanti-
zation for sequential detection is studied, and the optimal quantizer is
shown to be a likelihood ratio quantizer. Moreover, we show that the
quantizers obtained as a result of a joint optimization are the same as
those obtained when each local quantizer is optinized independently. The
specified performance level in terms of error probabilities is shown to
be achievable despite channel errors at the expense of increased
ASN's. An example is presented to illustrate the results obtained in
this chapter.

In Chapter Four, we propose and analyze a simple sequential detection
scheme using multiple sensors. The performance expressed in terms of the
ASN is shown to improve monotonically with the number of local detectors
(sensors) used. Moreover, w2z show that when truncated, the sequential

test based on multiple sensors has a smaller increase in error proba-




bilities than its single detector counterpart. A numerical example is
presented to illustrate the results of this chapter.

In Chapter Five, we generalize the SPRT of Wald to a distributed
system consisting of two local detectors and a global decision maker
(GDM) ., Each local detector performs an SPRT based on its own observations
and communicates its local decision to the GDM. The GDM combines the
local decisions according to a predetermined fusion rule, and decides
either to stop and accept one of the two hypotheses, or to continue. The
global error probabilities are shown to be functions of the lccal error
probabilities and the fusion rule. The global test duration is obtained
for varicus possible fusion rules and its average is derived. An example
is presented for the case of two identical local detectors.

In Chapter Six, a modified sequential detection procedure is proposed
and analyzed. The structure of the distributed system is the same as that
considered in Chapter Five. Each local detector takes a group of No
observations, performs a likelihood ratio test, and decides either in
favor ¢f one of the hypotheses or declares its inability to decide. The
local decisions (including no decision) are transmitted to the GDM which
combines the local decisions according to a predetermined fusion rule, and
decides either to stop the local tests and accept one of the hypotheses or
to continue. When the global decision is to continue, the detection
process is repeated ignoring all previous stages. The binary and M-ary
hypothesis testing problems are considered. A truncation scheme to
limit the number of observations from being excessively large is proposed
and analyzed. Numerical results are presented to illustrate the
performance of the system.

In Chapter Seven, the nonparametric sequential conditional sign test




of Shin and Kassam [22] is first studied and modified. The modified test
has fixed thresholds that are independent of the observations and, there-
fore, it does not require the table look-up operation. Both the sign and
conditional sign nonparametric sequential tests ([22] are generalized to a
distributed system of two local sensors (or detectors). The resulcing
tests are shown to maintain the desirable nonparametric property. A
numerical example is presented for illustration.

In Chapter Eight, a summary of results, conclusions, and suggestions

for future research are presented.




CHAPTER TWO

PRELIMINARIES

In this chapter, we briefly review Wald's sequential probability
ratio test (SPRT). Some terminology and notation are introduced. The

modeling of SPRT as a finite state Markov chain is also discussed.

2.1, Wald's Sequential Probability Ratio Test

Consider the problem of testing a simple hypothesis H, versus a simple

0
alternative Hl. Let £(x,8) denote the probability density function of
the random variable x representing the observation (sample) under
consideration. Let Ho be the hypothesis that 6 = 60, and Hl the hypo-
thesis that 0 = 91. Thus, the distribution of x is given by f(x,ej) when
Hj is the true hypothesis ,j=0,1. The successive observations on x are
denoted by xl,xz,...xn(n 2 1) and they are assumed to be statistically
independent and identically distributed (iid). For any positive integer

n, the conditional probability density function of X given Hj is given

by

fx /B
25N

n
Il £x, 00 3

= 0,1 (2.1)
3 i=1

A , ,
where x =[x_x....x ] is the observation vector.
- 172 n

Wald's SPRT for testing H, against Hl is defined as follows: Two

0
positive constants tu and tz(tu > tz) are chosen. At each stage of

testing (n, n 2 1), the likelihood ratio function An defined below is

computed.



£ /£ (2.2)
X

The likelihood ratio function in (2.2) is compared to the thresholds tu

and tZ as follows:

2 tu , stop and decide Hl

0 (2.3)

A < tE , stop and decide H

otherwise, continue

The choice of the test thresholds depends on the desired values of the

exror probabilities o and B, where o is the probability of deciding Hl

when Ho is true, and P is the probability of deciding HO when Hl is the

true hypothesis. It has been shown [l1] that the approximation of the

thresholds

mn

1-p/a .

(2.4)

W

t

g B/(1 - o

is sufficiently accurate for all practical purposes and, consequently, it
is widely used in the literature.

The monotonicity of the logarithm function enables us to derive a
more convenient test by simply taking the logarithm of (2.3). The re-

sulting test is given by

2 log tu , stop and decide Hl

, stop and decide HO

log An < log t (2.5)

4
otherwise, continue

Taking the logarithm of the likelihood function in (2.2), we obtain

n f(xi,el)
log A.n = 5— log 27;__6—7 (2.6)
S i’

oy

S




Zi = log ET;ZTE_T (2.7)

the test procedure can be described as follows: At each stage of the
test (n, n 2 1), the sum zl + 22 + ... 0+ Zn is computed, and the follow-

ing test is performed

2 log tu , stop and decide H

n 1

7_ 2, < log t, , stop and decide H (2.8)
i £ 0

i=l

otherwise, continue

The performance of an SPRT is characterized in terms of the operating
characteristic (OC) and average sample number (ASN) functions. These are

discussed next.

2.2. The OC Function ¢of the SPRT

The operating characteristic function L(8) of an SPRT is defined as
the probability that the sequential testing procedure will terminate with

the acceptance of the hypothesis H, when 6 is the actual value of the

0
parameter. This is necessary in situations where the exact knowledge of
the parameter(s) of the distribution function is not available. An
approximate formula for L(8), neglecting the excess of the likelihood
function An over the test thresholds tu and t

2 at the termination stage

is given by (1]

ch(e) -1
u
th(e) _ th(e)
u L

L(6) = (2.9)

10




where h(0) is the unique nonzero solution of the equation

= £(x,8,)1n(6)
J 2727657 f(x,0) dx =1 (2.10a)

when x is a continuous random variable, and h(8) is the unique nonzero

solution of the equation

f(x,el) h(0)
E: 27;76_7 f(x,0) =1 (2.10b)
X 0

when x is a discrete random variable. The summation in (2.10b) is
clearly over all possible values of x.

From (2.10a) and (2.10b), it is obvious that h(60)=l and h(91)=-1.
Therefore, it follows from (2.9) that for tu and t2 as given by (2.4), we

have L(eo) = 1-a, and L(Ol) = B as required.

2.3. The ASN Function of the SPRT

Let n denove the number of observations required for the terminat’i n
of the sequential test, and let Ee(n) denote the expected value of n when
0 is the true value of the parameter. Ee(n) is a function of 6 and is de-
fined o be the average sample number (ASN). Following Wald [1] in neg-
lecting the excess of An over the thresholds at the termination stage, it

can be shown that Ee(n) is given by

L(B) log t, + (1~ L(6)] log t
Ee(Zi) 0

winere Zi is as defined by equation (2.7), and Ee(zi) is given by

|4

Ee(n) 2 E,{(%2,) # 0 (2.11)
i

f(xlel)
Ee(Zi) = J log ET;TEET - £(x,0) dx (2.12)

-0

11




when x is a continuous random variable. When x is a discrete random

variable, equation (2.12) becomes

£(x,0 )
Eq(2,) Tlog = e) - £(x,6) (2.13)
When Ee(zi) = 0, we denote ©' the value of 6 such that Ee(zi) = 0. In this
case [l1], the expression for EO'( is given by
e m = - log tz log tu 210
[ N F] .
6 Ee,(Zi)
and the corresponding OC function is given by
log tu
L{B") = (2.15)

log tu - log tZ

It should be emphasized that the expressions for the 0OC and ASN func-
tions as given by (2.9) and (2.11) respectively, are approximate in that
they were derived under the assumption of no excess over the test thresh-
olds. It is possible to derive the exact expressions for the OC and ASN
functions only when the random variable Zi defined by (2.7) can take a
finite number of values which are integral multiples of a constant.

Using the characteristic function of the test duration, Wald {1] derived
expressions for the probability distribution of the test duration as well
as exact expressions for the OC and ASN functions. The solution of
Wald's equations has been simplified by Girshick [30] who reduced the
solution to that of solving a set of simultaneous equations. 1In the re-

mainder of this chapter, we present a totally different approach to the

12



computation of the exact values of the OC and ASN functions as well as
the exact distribution of the test length (duration). The approach in
the next section is based on a formulation of the sequential test as a
random walk on a finite number of states using the transition probability

matrix.

2.4. The Transition Probability Matrix Formulation of the

Sequential Test

In this section, we describe an alternate approach for the evalu-
ation of the exact distribution of the sequential test length as well as
the corresponding CC and ASN functions. The approach requires that the
step Zi as defined by (2.7) be finite-valued and takes values that
are integral multiples of a constant. This facilitates the formulation
of the SPRT as a random walk (Markov chain) on a finite number of states
and its complete description by the specification of its transition proba-
bility matrix. Proakis ([28] described the random walk formulation
approach and derived the exact distribution of the test length T and the
ASN for quantized radar signals. The same approach is described in more
detail in [29] which is the basis for the material presented here.

Consider a Markov chain with a state space made up of (N+1) states

(n)

given by 0,1,2,...,N. Let Sn denote the state at stage n and Pi] denote

the probability of being in state j after n transitions starting in state

i, i.e.,

(n) _ . -
Pij = Pr {Sn = j/S0 i} (2.16)

(n)

States 0,1,...,r~1 are transient in that lim P, = 0 for 0<i,j<r-1,
n-eo ij

while states r,r+l,...,N are absorbing, and Pii = 1 for r<isN. As n

13




approaches e, the process will ultimately be absorbed in one of the

absorbing states.

The stochastic process is described by the transition probability

matrix whose (ij)th element is Piﬁ) 2 Pij and which can be represented in

the partitioned form as follows

(2.17)

)
(]
————
o o
i
| SR

where 0 is an (N-r+l) X r matrix all of whose components are zero, I is
an (N-r+l) X (N-r+l) identity matrix and Qij = Pij for 0<i,j £ r-1.

A straightforward matrix multiplication shows that the nth power of P

is given by

Q" (z+g+...+Q" HR
_P_n= (2.16,
0 FR
n n \ . n ,
Let W = I + Q +...+ Q ,upon rewriting W, we obtain

Q
=1+9Q En—l (2.19)
In the limit, we have
, n
W= lim W (2.20)
A= Am R

Combining (2.19) and (2.20), we arrive at

W=I+QW (2.21)
which can be written as
(I -QW =1 (2.22)
From (2.22), we observe that W = (E—Q)_l, the inverse of (I~Q). The

matrix W is called the fundamental matrix associated with Q

The ASN is

14




obtained by ccunting the number of visits to all transient states knowing
that the process started in the ith transient state. In other words, we
have

r—-1

ASN =) W, 0%igr-l (2.23)

=0 *
Turning to the termination probabilities, i.e., the probabilities with
which the process will be absorbed in one of the absorbing states.
Recall that the states k=r,...,M are absorbing. Since such a state
cannot be exited once entered, the probability of absorption in a

particular absorbing state k up to time n and starting from initial state

i, is simply

P, =Pr{S =k/S, =1} , 0< i <£r-1landr <k SN (2.24)

In terms of the test length T, we can write

(n)
Pik

Pr{T £ n and ST k/s0 =i} ,0 £ 1< r-1and r £k €N {(2.25)

where T = min {n 2 0: r S Sn < N} is the termination time. Let

(n)
| Usk

Pr{T € n and ST k/s0 =i}, 0 £ 1 £ r-landr <k £N (2.26)

Referring to (2.18), (2.24) and (2.25), we give the matrix gn by

=g+ ...+ 0" HR (2.27)

which can be simplified using (2.19) to obtain

o® = " iR

(2.28)

Taking the limit as n -+ o, we obtain the absorption probability matrix

15




U in terms of the fundamental matrix W as simply U = W R, or

r-1

== < 3 - <
U, J_Zo W Ry +0SiSrlandrsksy  (2.29)

It shculd be emphasized that equation (2.29) gives the exact value of the
termination probability to state k starting from state i, and therefore, it
can be used to ensure the specified error probabilities. On the other
hand, (2.26) through (2.28) give the cumulative probability of termina-

t ‘on in state k starting from state i. Therefore, summing over all k, we

obtain

N
er{T < n} = ) ulY (2.30)
K=t

which gives the cumulative probability distribution of the test length
given that the process started in state i, i.e., S0 = i,

In the above analysis, we assume that the transition probability
matrix is given and obtain the ASN and termination probabilities.
However, while applying the theory to the sequential hypothesis testing
problem, it is clear that we have to deal with two transition probability
matrices each corresponding to one of the two hypotheses. Moreover, the
set of absorbing states has to be partitioned into two groups each
corresponding to a decision in favor of one of the hypotheses. The OC
function can be easily found by summing the probabilities of termination

in all the states assigned to H, decision prcvided that the transition

0

probability matrix which represents the true parameters is used.

This formulation will be used in the iater chapters to illustrate the

concepts developed.




CHAPTER THREE

A SEQUENTIAL PROBABILITY RATIO TEST BASED
ON MULTISENSOR DATA

3.1. Introduction

In binary hypothesis testing, it is well known that sequential test
procedures provide a significant advantage over fixed-sample size (FSS)
test procedures [1,3-5]. For prespecified values of the error probabil-
ities o and B (where ¢ is the probability of error of the first kind and
B is the probability of error of the second kind), the sequential
procedures, on the average, require a substantially less number of obser-
vations (samples) than FSS test procedures. The sequential probability
ratio test (SPRT) of Wald [l] is known to be optimal among all possible
sequential test procedures.

In this chapter, we generalize Wald's SPRT to a distributed system
consisting of M local sensors and a global (central) decision maker as
shown in Fig. 3.1. In Section 3.2, we define the observation model,
formulate the centralized SPRT based on multisensor data, and derive an
expression for the global average sample number ASNj when the hypothesis
Hj, j=0,1, is true. Moreover, we show that ASNj is a monotonically
decreasing function of the number of local sensors used. In most
multisensor detection systems, a bandwidth constraint on the com-
munication channels carrying data from local sensors to the global de-
cision maker (GDM) is assumed. Therefore, it is often necessary to com-
press the data locally prior to transmission. In Section 3.3, we gquantize
each of the local observations into two levels and transmit the quantized

value to the GDM for further processing. The issue of optimal
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Fig. 3.1: A distributed system consisting of M local sensors
and a global decision maker.
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quantization is studied in some detail, and it is shown that a globally
optimum design of the quantizers is obtained by optimizing the individual
local quantizers independently. Also, it is shown that an optimal local
quantizer is based upon the quantization of the local likelihood ratio
(LR). In Section 3.4, we show that ASNj is a monotonically decreasing
function of the number of bits used for local quantization. In Section
3.5, we consider a distributed system consisting of two identical local
sensors. The SPRT at the GDM is formulated as a random walk ([28,29] on a
finite state Markov chain and the effect of transmission errors is inves-
tigated. Two cases are studied. 1In the first case, it is shown that when
the transmission errors are neglected, the result is an increase in the
error probabilities over their specified values. It is shown in the
second case that when the transmission errors are incorporated in the de-
sign, the specified error probabilities are satisfied at the expense of an
increased ASNj, j=0,1., In Section 3.6, we present some numerical re-
sults for the system described in Section 3.5. Fina.ly, the results

obtained in this chapter are discussed in Section 3.7.

3.2. A Centralized SPRT for Multisensor Data

Consider the multisensor distributed system shown in Fig. 3.1 which
consists of M local sensors and a global decision maker (GDM). The

problem under consideration is that of testing a simple hypothesis HO

versus a simple alternative H Let f(xi,ei) denote the probability den-

1
sity function (pdf) of the random variable xi, i=1,2,...,M, which repre-

sents the observation at the ith local sensor. Let HO be the hypothesis

and Hy the hypothesis that Gi = 8,. . Therefore, the pdf of

that 8, =0
1 il

io’

Xi is given by f(xi,eij) wher Hj, j=0,1, is true. The successive
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observations on X, are denoted by x,. , X,.,...,X%, (n 2 1) and they are
i il 12 in

assumed to be iid. The observations are also assumed to be independent

from one sensor to the other, i.e., X0 is independent of x,, (m # k), and

ik
XZm(E # 1). Each local sensor is assumed to process its own observa-
tion(s) and transmit the analog value of the local test statistic to the

GDM. At any observation time n{(n 2 1), the GDM computes the central

likelihood ratio (CLR) function Acn as follows

M n f(x., , 9..)
A ik il
A2 T l 1T } (3.1)
en o L= Ty 959
where f(x, , 0..) = f(x,, 0..). Equation (3.1) can be written as
ik i3 i ij

M [n-1 f(xik' eil) f(xin' 911’
A = TT o TR 55 (3.2)
i=1 L k=1 ik" 710 in” 710
which is recognized as the product of the CLR at the (n-1)th stage
and the nth increment A" , where AT is given by
c(n-1) c c
M f(x, , 8,.)
n in il
A= T (3.3)
¢ gap Bleyne By)
Hence
n
Acn A'c(n--l) ¢ c

The centralized SPRT at stage n compares Abn with two thresholds (1] A

and B as follows

2 A, stop and decide H

Acn < B , stop and decide H (3.4)

otherwise , continue

where A = i—ﬁ

= ; , and B = I%a are the test thresholds. From the monoto-
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nicity of the logarithm function and the fact that Acn as well as A
and B are always positive, a more convenient test is derived by taking

the logarithm of both sides of (3.4) to obtain

2 log A ,stop and decide H

1
log 1\.cn < log B ,stop and decide HO (3.95)
otherwise, continue
Taking the logarithm of the CLR in (3.2), we obtain
log A )L S-_ Fo O3 + 1o TRty (3.6)
ShAn = L1 29 Tx., e 9 f(x., 8. :
ik i0 i0
i=1 k=1
f(xik' 611)
Let 2,, = log ,1i=1,2,...,M; k2 1, to obtain
ik £y k! Gio)

M n-1 M M
tog A, = )N [ Yoyt Zin] =) )z t) o2y (3.7)

I
]
oy
=
Il
—
-
]
=
~
il
—
’..
]
—

Equation (3.7) shows that the local test statistic, 2 k 21, is simply

ik’
the logarithm of the local LR function. In other words, at any stage of
the test each local sensor computes the logarithm of its LR function
based on the current observation and transmits the result to the GDM

The GDM employs the received local test statistics to update its test
statistic log Atn according to (3.7). Because the successive observa-
tions at the ith sensor, i=1,2,...,M, are iid random variables, it
follows that Zik' k 2 1, is also a sequence of iid random variables.

Assuming no excess over the test thresholds [1], it follows that when

Hj is true and the test terminates, we have
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log A , with probability p,
log Acn = J (3.8)
log B , with probability (1—pj)

e

where Py a and Py = (1-B). Equating the expected values of both sides

of (3.8), we obtain

n M
Eflog A} é E[ y_ S— Z, ] = p, log A + (1-p.) log B (3.9)
cn ik 3 3
k=1 i=}
n M
However, ) ;_ Zik is a random sum of iid random variables. Therefore,
k=1 =1

its expected value is known ,29] to be

n M M M

z[ I ] = E(n) o E[ Y zi] =Eln) s ) E2)  (3.10)

i=1 i=l
A . .
Therefore, ASNj = E[n/nj] i3 given by

p., log A + (1-pj) log B

asN, = , 3=0,1 (3.11)

M
i§1 E[zi/Hj]

Since ASNj, j=0,1, is a positive real number, it follows that the denomi-
nator and numerator in (3.11) must have the same sign. Moreover, it is
clear that if the ith sensor is used alone, then the denominator in (3.11)
is E[Zi/Hj], i=1,2,...,M. Therefore, B[Zi/Hj] must have the same sign as
the numerator of (3.11) provided that the ith sensor observations are
sufficient for detection, i.e., the ith sensor is reliable for detection.

The reciprocal of ASNj in (3.11) is given by

M
1%y B(E; /8,

(ASNj) T, log A + (1—pj) log B r 3=0,1 (3.12)




Let g,, = E(2,/H,1/{p, log A + (1-p.) log B}. Therefore
13 13 3 J

M

Y 9., (3.13)

i=nn Y
For reliable local sensors, it is clear that gij >0, i=1,2,...,M, and

134

-
(ASN.) =
j

j=0,1. Therefore, it follows that

M M-1
y > . . 3.14
I ;g”> > ) 979, (3.14)

which shows that (ASNj)-l, the inverse of ASNj is a monotonically in-
creasing function of the number of local sensors. Consequently, it
follows that ASNj is a2 monotonically decreasing function of the number of
local sensors used.

The centralized SPRT considered above is optimal in the sense that no
quantization was employed. However, its implementation requires an error
free transmission of analog observations or their analog sufficient sta-
tistics which is practically impossible to achieve. Therefore, we focus
our attention in the next section on the case when each local sensor quan-
tizes each of its individual observations into a binary-valued variable

prior to transmission.

3.3. The Multisensor Centralized SPRT with Quantized Data

In the previous section, it was assumed that each local sensor 1is
capable of computing the likelihood ratio function at its location and
transmitting the exact computed value to the central processor exactly.

In this section, we assume that each .local sensor quantizes its individual
observations into two distinct levels (one bit quantizer), namely 0 and 1.

The quantized local observations are communicated to the GDM where a
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centralized SPRT is performed. The binary quantization of the local
observations greatly reduces the communication channel bandwidth
required. In addition, it simplifies the implementation of the SPRT at
the GDM.

Consider the system shown in Fig. 3.2, which consists of M local
sensors followed by M local quantizers. The analog observations are as
defined earlier in Section 3.2. The ith quantizer Qi maps the successive
observations of the ith local sensor into a sequence of 0's and 1's.

Therefore, the hypothesis testing problem is given by

HO P Y E B(Pio)

i=1,2,...,, and k 2 1 (3.15)

By ¥y = BlRyy)
where Yoy is the random variable representing the output of Qi corre-
sponding to the kth observation. B(pij) is a Bernoulli random variable
with probability of success, i.e., Yip = 1, equal to pij when Hj is true.
The probability pij is given by
p.. = J f(x,, 6,.) dx, {(3.16)
i) i ij

1i

where Rli is the region of the observation space in which ' is assigned
the value 1. Clearly, the design of the ith quantizer Qi involves a

unique determination of the region Rli’
The centralized SPRT is performed at the central processor in a

manner identical to that described in Section 3.2. The only difference

is that Zik = Zi is now a discrete two-valued random variable whose dis-

tribution when Hj is true is given by
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Fig. 3.2: A distributed system consisting of M local sensors
followed by M local quantizers and a global decision maker.
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log[(pil)/(pio)] , with probability pij
2, = (3.17)
ik

log[(l-pil)/(l—pi }] , with probability l-pij

0

From (3.17), we observe that the operation of the central processor can

M
be described in terms of a finite number of possible steps (,XZ. Z,),

i=l 1
. M . . M . .
i.e., there are 2 possible steps corresponding to the 2 possible combi-
nations of the local observations. The values of these possible steps
are known and can be stored in a read-only-memory. To derive expressions
for the ASN's we follow the same procedure as used in deriving equation

(3.11) . For the quantized observations case, (3.11) can be written as

follows

1-f

04

B

p, log 1-a

+ (1-p.) lo
?J g

ASNj = (3.18)

[ ye By

1% [pij logl(pil)/(pio)H (1—pij) log[(l-pil)/(l-pio)]]
It should be emphasized that (3.18) is derived under the assumption of no
excess over the test thresholds for given quantizers.

Next, we address the issue of optimal design of the quantizers Ql'
Qz,..,.,QM and show that the optimal quaatization is obtained by optimiz-
ing the local quantizers independently. To this end, let Dj denote the

denominator of (3.18) when Hj is true, and let Di' denote the

contribution of the ith quantizer to Dj' Therefore, we can write

M—-
D, = ) D (3.19)
i L i

Note that the numerator of (3.18) is fixed. Therefore, in order to
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minimize ASNj, Dj must be maximized. However, maximization of the sum of
any number of functions is equivalent to the maximization of the summands

or individual terms. In other words, we can write

M
D.] = D, . (3.20
max | J] %q_ max [ lJ] )

Qllozl'-’IQM Qi

H

Let R*, be the region R

1i that corresponds to the optimal quantizer Q;,

1i

and let p;j be as defined in (3.16) with R,, being replaced by Rii.

1i

Suppose that H, is the true hypothesis, then with the optimal choice of

1

D*, is given by

Q;’s the maximum value of Dl' i

A u Pih Ply
D*x = max [(D.,] = ; [p? log + (1 - p* ) log ] (3.21)
1 3 il x il *
Q.,0 Q i=1 i0 i0
X2 Ty

The expression for the maximum value of D D*, is obtained from (3.18)

0" 70

and is given by

fl Pi; Piy
D = [p? log + (1 - pr) log = ] (3.22)
0 S0 Pio 10 P{o

Observe that the optimization of Dl does not, in general, lead to an

optimal D0 and vice versa. 1In other words, we can optimize either D1 or

D. or a weighted sum of them, i.e., we can optimize either ASN1 or ASN

0 0

or the weighted sum given by

ASN = vy ASNl + (1-y) ASN Y £(0,1]} (3.23)

0 I
Next, we show that an optimal local quantizer is a likelihood ratio

quantizer. We focus our attention on the ith quantizer Qi whose

contribution to the denominator of (3.18) is given by
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Py 1-pyy

il
D.,. = p.,. log — + (1-p,.) log —— (3.24)
1j 13 i0 il 1 piO
When Hl is the true hypothesis, we can write (3.24) as follows
P. l-p,
11 i1l
D.., = p,. log == + (1-p,,) log T— (3.25)
i1 i1 pio il 1 piO

We treat piO as a constant, and differentiate (3.25) with respect to pil

to obtain
db. P, 1-p, 1-p,
3 log eSS + 1-log - il - 1} log — + log 1 10 (3.26)
P; Pio Pic R
it i >
For Py > Pior Py and Py € (0,1), it is clear that pillpio 1 and

(l—pio)/(l-pil) > 1. Therefore, we conclude that

®; oy P, (15D, )
Py, Pio{t Piy)

>0, for Piy and Pio € (0,1) (3.27)

Similarly, when HO is the true hypothesis, we can write (3.24) as follows

Py 1-p,
= b ‘2
Dio pio log ET— + (1-p. 0) log 1p. (2.28)
i0 i0
Differentiating (3.28) with respect to Piqr we obtain
D0 Pio 1 1Pi = 1) Pio ~ Piy
d T \Pip ° * SR T L e = .. dp, ) %
Pi1 Pi1  Pig *Pio Pio Pi1'*7Pyy
dDi
Equation (3.29) shows clearly that is negative for p,, > p.,. and
dpil il i0
nontrivial quantizer, i.e., Py and Pio € (0,1). The numerator of the
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riaht hand side in (3.18) is determined by the values of error proba-
bilitie o and f. For small values of a and B, it is clear that when
Hl(HO} is true, the numerator of (3.18) is positive (negative). There-
fore, differentiating (3.18) with respect to Py and observing that the

numeratnr which is denoted by N(q,B) is not a function of pij’ we obtain

d(ASN ) do,
I @B 50 g g 5e0,1 (3.30)
dp D dp
i i i1

From (3.30), we conclude that for any fixed Py and nontrivial quantizer
(pil > piO and pil' piO g (0,1)), ASNj is a monotonically decreasing
function of pil' Consequently, the optimum quantizer is the one which
maximizes Py corresponding to a fixed Pio* This quantizer is obviously
the one that employs a Neyman-Pearson criterion (likelihood ratio
quantizer) with a brobability of false alarm equal to Pio (0 < 1 <1).

0

3.4. Performance Enhancement by Means of Multi-level Quantization

The quantizers considered so far were binary valued. Since the
quantizer does not discriminate between the observations in any single
region of its two regions, the quantization leads to a performance
degradation as reflected by an increase of both ASN1 and ASNO. However,
this performance loss can be reduced by further partitioning of the obser-
vation space, i.e., by allowing more quantization levels. 1In this section, we
show that ASNj, j=0,1, is a monotonically decreasing function of the
number of quantization levels when the quantization is based on the like-
lihood ratio function.

To prove our claim, it suffices to show that given any region R of the

observation space, where R is specified in terms of the two thresholds t1
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and t2 (tl < tz) such that for any point x € Kk, we have LR(tl) < LR(x) <

LR(tz) as showr in Fig. 3.3. Then as a result of partitioning R into
two regions, the denominator in the expression of ASNj in equation (3.11)

increases when H. is true (j=1) and decreases when H

) is true (j=0). Let

0

prj' j=0,1, be the probability of an observation falling in R when Hj is
true with 0 < prj < 1. Since the local quantizers were designed inde-
pendently as shown in the previous section, it follows that the region
R can be specified at any of the local observetion spaces. Therefore,
in what follows we simply drop the index i of the local quantizers for

convenience. Let the region R be partitioned into two mutually exclusive

subregions Rl and R2 such that

]
[}

Pr1 “rl * prl
(3.31)

1 2

Pro = Pro * Pro
where pij is the probability of an observation falling in the subregion
Ri, i=1,2, when Hj, j=0,1, is the true hypothesis. We assume without

loss of generality that the likelihood ratio at any point in R2 is higher

. . . 1 .
or at least equal to its maximum in R°. Therefore, it follows that

P p P
rl N rl S rl (3.32)
2 pro 1

prO pr0

Upon writing the expression of ASNj as in (3.18) after deleting the
quantizer index i and looking at the contribution of the region R to the

denominator, we observe that
P
rl
log —= (3.33)
prO
where € is the contribution of all the regions in the observation space

D, =¢ + .
J prJ

other than R. Similarly, the contribution of the subregions R1 and R2
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Fig. 3.3: A region R of the observation space such that
LR(t}) < LR(x) < LR(t,)
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can be incorporated in Dj to obtain

Pl P2
1 rl 2 rl
= + e —— + —————— .
Dj € prj log 1 prj log > (3.34)
Pro Pro

Qur objective is to show that ASNj, j=0,1, is a monotonically decreasing
function of the number of quantization levels. Therefore, comparing
(3.33) with (3.34), we conclude that in order to prove the claimed mono-

tonicity it suffices to show that

1 2
P p P
1 rl 2 rl rl
—— _—> ———
Py log 1 + P log > P 1 log i (3.35)
Pro Pro
and
Pl P2 p
1 rl 2 rl rl
Po log 1 + Pro log > < P log o (3.36)
prO prO

To prove the inequality (3.35) which corresponds to the hypothesis H

1
being t ssume that 2 . and 2 . c wh c, > as
g true, we a e prl c1pr1 prO oprO' ere 1 co

a consequence of (3.32). The left hand side of (3.35) can easily be
written as
(l-c,)p c.p
1" rl 17 rl
L.H.S. = (1-¢c.) p log ==———rT—= +c,p log —— (3.37)
1 rl (1 co)pr0 1% r1 copr0
Simplifying (3.37), we obtain
p l-¢ P c
rl 1 rl 1
L.H.S. = (l-cl) prl[log B + log 1—e ] + clprl[log ") + log . ]
x0 o] r0 o
prl 1-c c1
= —_— 4 - + —— .
prllog e, prl[ (1 cl) log 1_Co cy log co] (3.38)
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The first term on the R.H.S. of (3.38) is equal to the R.H.S. of (3.35).

Therefore, the proof of (3.35) is complete once the second term on the
R.H.S. of (3.38) i3 shown to be positive. We observe that Py > 0, and

use the inequality log x < x-1, x # 1, to obtain

l1-¢ 1-co l-co
(1—c1)log e - (1-cl)log 1o > - (l—cl)[l_c -1] = - (cl-co) (3.39)
0 1 1
and
, co cO
¢, log P log < > - cl(z— -1) = €17, (3.40)
o 1 1
Combining (3.39) and (3.40), we obtain
1-¢c c1
(l—cl)log l_co + , log E; >0 (3.41)

and, therefore, ASN1 decreases monotonically by increasing the number of

quantization levels. Similarly, when H., is the true hypothesis, the

0
inequality (3.36) can be simplified yielding

prl 1-c cl
L.H.S. = Po log ;—— + pro[(l-co) log 1o + co log ;—] (3.42)

0 o o)

The first term on the R.H.S. of (3.42) is equal to the R.H.S. of (3.36)

l1-c c
while the terms (l-co) log 1o and S log El can be simplified as
o 0
follows
1--c1 1--c1
(1—co) log 1< < (l—co) [ 1s ~ l] = - (cl—co) (3.43a)
o) o
ol 1
c log —<c¢c |—™ -1 = ¢,-¢ (3.43b)
o co o co 1 7o

From (3.43), it follows that
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l-c c1
+ ¢ log ——] <0 (3.44)
o co

pro[(l—co) log l_co

and, therefore, ASNO decreases monotonically by increasing the number of

quantization levels and the proof is complete.

3.5. The Effect of Transmission Errors

In Section 3.3, we have considered the quantization of each of the
local observatiors into two levels, namely 1 and 0. There it was
assumed that the quantized local observations are communicated without
errors to the global decision maker where a centralized SPRT is per-
formed. However, the assumption of error free transmission is not
realistic, especially at high transmission rates. Therefore, we devote
this section to a study of the effect of transmission errors on the error
probabilities o and B. For the sake of clarity, we consider the case of

two identical local detectors and the following observation model

: = 5 i = : >
Ho P ¥y B(po) i 1,2; k21 (3.45)
Hl B I B(pl) P, = l-p0 > 0.5
where B(e) is as defined in (3.15). The choice 51 = 1—50 is intended for

facilitating the formulation of the SPRT at the central detector as a
random walk of equal steps ([28,29]. The communication channel is assumed
to be a binary symmetric channel in which the error rate is p, as shown
in Fig. 3.4.

The quantized observations encounter errors as they pass through the
noisy channel. At the central detector, the observation model in (3.45)

is still valid but with different values of parameters, namely 50 and 51
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Fig. 3.4: A binary symmetric channel with error rate p,.
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are replaced by Pye and Py respectively. When i%, j=0,1, is the true

hypothesis, we can solve for pjc as follows

.= p.(1- -p. = p,(1- + .4
Pio = Ps(1-p) + (1-p,) p_ = P,(1-2p) + p_ (3.46)

Suppose that Hl is the true hypothesis, we obtain from (3.46) that Py,

~ _ ~ o ' ) = _ . 2
pl(l pe) + plpe. Similarly, when H, is true, we obtain p0c po(l pe) PP

0
We note that

~

1 - Poe © 1‘PO t PyPg = PyP

o = Py(1°P) + P =P (3.47)

From (3.47), we observe that the observation model at the central

detector is symmetric and is given by

T
e
It

0 F 9k = BPy) *
(3.48)

m
€
1]

1 ¢ W5 = BRy ) Pio = 17Pge > 003
where mik is the kth observation of the ith local detector as seen at
the front end of the global processor.

The central processor observes the incoming quantized observations
and performs the SPRT. Let éj be the probability of a local observation
arriving as 1 at the central detector when Hj is the true hypothesis.

Therefore, the observation model of the central detector is as follows:

11 , with prob. 53

[}

H, : y_ = 10 or 01, with prob. 2§j(1—§j) , k21 (3.49)
00, with prob. (1-{»3)2
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where Yex is the kth observation of the central detector. From (3.48),
it follows that the logarithm of the likelihcod ratio function is a dis-

crete random variable Zc whose probability distribution function under

k
the hypothesis Hj is given by

2 log (ﬁl/ﬁo), with prob. p? 85

H, : 2 = 0 , with prob. 2§j(1-§j) = s3 4=0,1; k 2 1 (3.50)
- o o 1 —A 2 =

2 log (pllpo) , with (1 Pj) Q

In {3.50), the positive step (2 log (ﬁl/ﬁo)) is equal to the magnitude of
the negative step (-2 log (ﬁo/ﬁl)). Therefore, the central SPRT can be
easily formulated as a random walk on a finite number of states (Markov
chain) as shown in Fig. 3.5. The states labeled 0 and N are absorbing
states with decisicns in favor of HO and Hl respectively. As long as the
process is in one of the transient states labeled 1,2,...,N-1, the
central test must be continued until for the first time the process
reaches one of the absorbing states. For the Markov chain in Fig. 3.5,
it is well known [29] that if the process starts in the transient state
number 2, then the probability of absorption in the state 0 is given by
@./p.) 2

u, = -———41——1———§ (3.51)
I 1 - (.
S

and the average sample number ASNj is given by

N(Q./P )"

- v ] (3.52)
j T s 1 - (Q./P))
] Q,/®;
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Decide HO

Fig. 3.5: A Markov chain of (N+1) states.
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From (3.52), it follows that for a given « and B, we must have 2 and N
chosen such that N 2 1-a and u, < B. To this end let us distinguish
between the following two cases:

Case 1: In this case, the channel is assumed to be error free while in
fact it is not so, i.e., the design is based on the parameters §0=§0 and
§l=§1 in (3.45) while the actual values of the parameters are ﬁo(l-Zpe) +

Pe and 51(1—2pe) + P, respectively. Therefore, the result will be higher

error probabilities than specified. This fact can be shown by observing

that
P Py(1-2p ) + p P P P
P RO TR oL, R LR ]
ic B,(1-2p ) + p_ B, (1-2p )P, (1-2p ) B,
%a Fé ~1
Since 50 < 51, it follows that { / = } = — > 1 and,

(1-2pe>po (1-2pe)p1 By
therefore, we have

P
0c >

(3.54)
p1c

'Ozlz
| ol (=]

On the other hand, for sufficiently large N and 2, which is the case
when the o and B are small, we can approximate the denominator in (3.51)

by 1. Consequently, we can write

Q P p
A . 1.2 yA 0c, 22
w =B 2 = = (—<) (3.55)
1 1 Pic
Similarly, 1t can be easily shown that
P -
@, 2 1-v, = (=2<) 2 (-2 (3.56)

-

1C
where ac and BC are the actual error probabilities at t e central level

when the channel is not error free as assumed. Equations (3.55) and

(3.56) show clearly that ac > o and Bc > B and hence the errors over
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the channel will lead to an increase in the error probabilities. Simi-
larly, it can be shown that ASNj as given by (3.52) is dominated by

Pj- Qj = (51—50)(1-2pe) < (ﬁl-ﬁo), which will lead to an increase in
ASNj.

Case 2: In this case, the channel is assumed to be completely known,
therefore, the central detector has a completely 3pecified observation
model under both hypotheses as given by (3.49) or (3.50) with ﬁj = pjc'
The exact knowledge of the observation model at the front end of the
central processor enables us to redesign the central detector taking the
transmission errors into account. Consider Fig. 3.5 once again and, let

zc and NC be the initial and final states instead of Z and N respec-

tively. Therefore, we can write

2(Nc—zc)
o Poc/P1c) 44 (3.57)
- ZNC a :
and - (p0c/p1c )
ZZc
{p. /p, )
0c “1c A
> = .
B > N Ba (3.58)

C
L= (pOc/plc)

where the inequalities (3.57) and (3.58) are obtained by restricting the
actual error probabilities o and Ba as shown on the right hand side of
(3.57) and (3.58) to be less than or equal to their specified values a
and B respectively. The fact that poc/plc > ﬁo/ﬁl implies that Zc'
NC-ZC, and Nc are larger than their corresponding values in Case 1. The
average sample number obviously increases with increasing 2 and N and,

therefore, ASNj, j=0,1, tends to increase when the channel is noisy.
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3.6. Numerical Results

The numerical results presented in this section are obtained assuming
two identical local detectors as described in Section 3.5. The observa-
tion model is as described by (3.42) with §l=0.54 and §0 = 1-51 = 0.46 and
the communication channel is as depicted in Fig. 3.4. The process of per-
forming the central SPRT is formulated as a random walk as described in
Section 3.5. The error probabilities are adjusted by suitable variation
of the initial state 2 or the number of states N+1 or both. 1In Table 3.1,
we present some values of Z and N along with the resulting error
probabilities and average sample numbers, for the case of one and two
local sensc.3.

Table 3.1. The error probabilities and ASN's for an error free

channel when one and two local sensors are used.

ONE SENSOR TWO SENSORS

o B Z N ASN,  ASN, Z N ASN, ASN,

184.45

210.68

249.18

500

537.5

625

750

812.5




The numerical results presented in Table 3.1 are obtained under the
assumption that Py = 0. However, the effect of channel errors on the per-

formance of the central detector is demonstrated in Table 3.2 for the two

cases described in Section 3.5. When P, 0, the choice Z = N/2 = 43

yields a = B = 1.03x10”° and AsN. = asy

1 0 537.5. As p, varies while 2

and N are fixed, the error probabilities o and B as well as the average

sample numbers ASN, and ASN, varies as shown under Case 1. On the other

1 0

hand, when pe varies while 2 and N are adjusted accordingly as described
in Case 2 of Section 3.5, the error probabilities are maintained while
ASN1 and ASN0 are higher than their values in Case 1,

Table 3.2. The effect of transmission errors on the

performance of the central SPRT.

CASE 1 CASE 2
Pg ac=Bc ASN, =ASN, 2=N/2 aa=Ba ASN, =ASN ,
0 1.03x10"° 537.5 43 1.03x10"° 537.5
0.02 1.79x1078 559.9 45 0.065x107° 585.9
0.04 3.11x1078 584.2 47 0.955x10"° 638.6
0.06 5.4x10” 610.8 49 0.994x10"° 696.0
0.08 9.39x10”° 639.9 52 0.833x10”° 773.8
0.1 1.63x107° 671.9 54 0.973x10”° 843.7
0.12 2.84x107° 707.2 57 0.938x10"° 937.5
0.15 6.49x107> 767.8 62 0.917x107° 1107.1
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3.7. Discussion

In this chapter, we studied a centralized SPRT based on multisensor
data, and showed that the average sample numbers are monotonically
decreasing functions of the number of local sensors. We also studied the
issue of quantization of the local observations and showed that an optimal
quantizer is obtained by using a set of independent local likelihood ratio
quantizers, when the local observations are independent both spatially and
temporally. Furthermore, we showed that by increasing the number of
quantization levels, the average sample numbers decrease monotonically.
The formulation of the central SPRT as a random walk on a finite state
machine of fixed structure (Markov chain) is considered for the case of
two identical local sensors. The numerical results in Table 3.1 show
clearly that when both Z and N are even, the average sample numbers are
exactly half of their counterparts in the case of single local sensor.
When the transmission errcrs are ignored, the result is shown to be an
increase of the error probabilities and average sample numbers over their
specified values as demonstrated in Case 1 of Table 3.2. 1In addition, we
showed that when the transmission errors are known, they can be incorpo-
rated in the design of the central SPRT to maintain the specified error
probabilities. 1In this case, the only effect of transmission errors is to

increase the average sample numbers as shown in Case 2 of Table 3.2,
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CHAPTER FOUR

A SIMPLE MULTI-SENSOR SEQUENTIAL
DETECTION PROCELURE

4.1. Introduction

In this chapter, a simple multi-sensor decentralized sequential test
is proposed and analyzed. 1In Section 4.2, we describe the proposed multi-
sensor sequential test and show that it satisfies the prespecified error
probabilities & and B. The ASN of the proposed test is shown to be a
monotonically decreasing function of the number of sensors used. More-
over, we show that the increase in the error probabilities as a result of
truncation of the multi-sensor sequential test at any stage n, is less
than its counterpart in the single sensor case, i.e. a single sensor
sequential test also truncated at stage Ny In Section 4,3, we employ the
memoryless grouped data sequential detection (MLGDS) test procedure [21]
at the local sensors in the multi-sensor decentralized scheme. The ASN is
shown to be a monotonically decreasing function of the number of sensors
used. This result shows the feasibility of using our testing scheme
based on multiple sensors that employ the MLGDS test procedure at the
local sensors to outperform Wald's SPRT based on a single detector. 1In
other words, the decision time of the multi-sensor system using MLGDS
local detectors decreases when more sensors are added. At some point, the
performance loss due to the grouping of samples and memoryless nature of
the MLGDS test is overcome and from then on the performance in terms of
average decision time is better than Wald's SPRT. Our scheme compensates

for the performance loss due to the grouping of samples and the memoryless



nature of the MLGDS procedure by adding more detectors. In Section 4.4,
we propose and analyze a truncation scheme for the case when the sensors
employ the MLGDS test procedure. Numerical results are presented in

Section 4.5 for illustration. Finally, the results of this chapter are

discussed in Section 4.6.

4.2. The Proposed Multi-Sensor Sequential Test

Consider the problem of testing a simple hypothesis H 6 versus a simple

0
alternative Hl' The multi-sensor observation system is as shown in Fig.
4.1 which consists of M local detectors and a supervisor (global)
detector. Let f(xi, 0) denote the pdf of the random variable X, i=

’2,...,M, representing the observation at the ith local detector.

Let H, be the hypothesis that 6 = 0

0 and Hl the hypothesis that 0 = 91.

ol
Therefore, the pdf of X is given by f(xi, Gj) when Hj is true, j=0,1.

X, X (n 2 1)

The successive observatrions on X, are denoted by x, IPYARERYARE

1
and they are assumed to be iid. The observations are assumed to be
independent from one lccal detector to the other, i.e., X0 is independent
of xik(m # k), and xzm(l # 1) . The local sequential detectors SDi' i=
1,2,..., M, are designed to satisfy the prespecified values of the system
error probabilities o and B. Each local detector performs an SPRT based
on its own sequence of observations and transmits its decision to the
supervisor detector as soon as a decision on one of the two hypotheses is
reached. Nothing is transmitted if the decision at the local detector is
to continue taking observations. The supervisor detector accepts the
first incoming local decision and declares it to be the global decision.

Also, it informs all the local detectors to terminate their tests when the

global decision is reached. It should be mentioned that when two or more
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local decisions are available to the supervisor detector at the same time,
only one of them will be accepted by the supervisor detector and this
choice is arbitrary.

Next we show that the overall system satisfies the required error
probabilities a and f. Let Yij denote the probability that the global
decision is based on the decision of the ith local detector when Hj is

the true hypothesis. Then, we have

M
Yoy, =1 j=0,1 (4.1)

=
Let eij denote the probability of error at the ith local detector when Hj
is the true hypothesis. Expressing the global error probabilities ag and

B_ in terms of e,.'s and Y,,'s, we obtain
g 1] 1)

M
a = X_ e.. Y. (4.2)
g /| i0 "i0
and
f&
B = e,.. V. (4.3)
g fe) il il

However, the design of the local detectors to satisfy a and § implies

that ei 1,2,...,M. Therefore, it follows from

0 = ¢ and e = B for i

(4.2), (4.3) and (4.1) that ag

o and Bg = B as required.
The SPRT at SDi is based on its local observations and is performed
in a manner identical to Wald (1], i.e., at stage n (n 2 1), the likeli-

hood ratio function Ain is computed:

(4.4)




This likelihood ratio is compared with two thresholds as follows

2 tiu' stop and decide Hl

A stop and decide H (4.5)

. < t,
in ie’
otherwise, continue.

0

where tiu and tiE are the test thresholds of SDi’ which can be approxi-

mated [1] by

. LS TC%1 _1-8
1iu eio a
and (4.6)
e,
ez iL  _ _8B
iR 1 - e, 1 -«
i0

Note that the number of samples necessary for the termination of the
sequential test at SDi is a discrete random variable Ti' We denote by
fTi(n) and FTi(n) the pdf and the cumulative distribution function (cdf)

of the test duration Ti’ where

fTi(n) Pr{Ti = n}

nz21 (4.7)

FT.(n)
1
The global test length is also a discrete random variable denoted by '1‘g

Pr{Ti < n}

and its pdf and cdf are denoted by ng(n) and ETg(n) respectively.

Now we show that the global ASN decreases monotonically with the
increase in the number of local detectors. We observe that for the M
detector system in Fig. 4.1 the event that the global test terminates
after the nth stage is the same as the event that none of the (SDi)'s has

terminated at stage n or before. Therefore, we can write
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Pr{Tg > n} = Pr{’rl > n, T2 >N, uney TM >n}, n21 (4.8)

Using the independence of local detectors, we may write

A
Pr{T >n} = (1 -F_ (n)) = (1 ~=F_ (n)] X {1=-F_ (0] xX...x [1 =-F_ (n))
g T T, T, Ty

(4.9)
Since (1 - FT (n)] <1 (n finite), i =1,2,...,M, it follows from
i

(4.9) that Pr{Tg > n} decreases as the number of local detectors

increases. The global ASN is given by

ASN = ) Pr{T_ > n} (4.10)

Since for each value of n, Pr{Tg > n} decreases with increasing M, it
follows from (4.10) and (4.9) that ASN decreases monotonically with M.

Also,

ASNi = §i Pr{Ti > n} i=1,2,...,M (4.11)
n=0
Since Pr{Tg > n} < Pr{'ri > n} for M > 1, the ASN is strictly less than
any ASNi, i=12,...,M. It should be emphasized that thke above
analysis is valid under both hypotheses.

From equation (4.9), it can be observed that the probability of
termination of the test after the nth stage is small since it is the product
of the corresponding probabilities of the local tests. However, it is
well known [1) that for the SPRT there does not exist any definite upper
bound for the number n of samples to be observed before reaching a
decision. Large values of n are possible with a nonzero probability.

Therefore, it is necessery from an implementation point of view to set a
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definite upper bound n, on n. This can be achieved by truncating the
sequential procedure at n=n., i.e., by specifying a new decision rule for
the acceptance or rejection of HO at the nTth stage if the sequential test
did not terminate prior to stage .
Next we show that the increase in error probabilities due to
truncation of the global test at stage n, is a decreasing function of
M. Let @& (n ) and BT(nT) be the global error probabilities at the
truncation stage . Recall that all local detectors are identical,

therefore, if we consider only one of the local sequential detectors, say

SDi' i=1,2,...,M, we can write

> <n <
aT(nT) Pr{AinT 2 V/H0 and e < Ain < tiu for all 1 € n £ nT} (4.12)

where v is the threshold at the truncation stage. Similarly, we can

write

= < 4 -
BT(nT) Pr{AinT V/Hl and t ., < Ain <t,, for all 1 €£n S nT} (4.13)

Let as(nT) and BsgnT) be the error probabilities satisfied by the sequen-
tial portion of the test. The optimality of Wald's SPRT (1] implies that
no cther sequential procedure can satisfy the same error probabilities
with a smaller ASN. However for the truncated test the ASN is obviously
smaller. Therefore, at least one of the error probabilities must be
higher than required. In our analysis, we assume aT(nT) > as(nT) and
BT(nT) > Bs(nT) following the convention in the literature (1,31)}. For
the truncated test, the overall error probabilities ao(M) and BO(M) for

the M detector case are given by:

uO(M) = as(nT) Pr{Tg < nT/HO} + aT(nT) Pr{Tg > nT/HO} (4.14)
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BO(M) = BS(nT) Pr{Tg S ng/H} o+ ﬁT\“T) Pr{Tg > n, /8. } (4.15)

and for the single detector case, say for the ith detector, we have

ao(l) = as(nT) Pr{Ti < nT/Ho} + (xT(nT) Pr:{'l‘i > nT/HO} (4.16)
= < > .17
Bo(l) Bs(nT) Pr{Ti < nT/Hl} + BT(nT> Pr{'ri nT/Hl} (4.17)
Simplifying (4.14) and (4.16), we obtain
= - - I <
ao(M) ao(nT) [aT(nT) as(nT)] Prng < nT/Hl} (4.18)
and
= - - <
ao(l) aT(nT) [aT(nT) as(nT)] P:{Tg < nT/Hl} (4.19)
respectively. Taking the difference ao(l) - ao(M), we arrive at
-— = - Rad <
ao(l) ao(M) [aT(nT) as(nT)] X [Pr{Tg < nT/HO} Pr{Ti < nT/Ho}]

As shown before, the second term on the right hand side of (4.20) in-
creases with increasing M. Therefore, ao(M) is a decreasing function of
M. In the same manner, we can show that ﬁo(M) is also a monotonically
decreasing function of M.

In the next section, we focus our attention on the analysis of the
multi-sensor decentralized scheme when the local detectors use the MLGDS
procedure of Lee and Thomas {21]. In this case, simple expressions can
be obtained for the test length probability distribution at both the
local and global levels. Also the expression for as(nT), Bs(nT),
aT(nT), and BT(nT) are simpler to find unlike the case considered above
where each local detector performs Wald's SPRT.

4.3. The Multi-Sensor Decentralized Scheme using the MLGDS Procedure

Consider the problem of testing a simple hypothesis Ho versus a

simple location alternative Hl' The observation model is as defined in
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Section 4.2 except for the fact that f(xi, Gj) is replaced by f(xi-Oj).
In other words, the observation model is given by
HO I f(x - 90)

, 121 (4.21)
Hl T f(x - 91).
where 91 > 90 and X, o~ f(x—ej) means that the ith observation Xy of any
local detector has a pdf f(x-ej) when Hj,j = 0,1, is the true hypothesis.
The pdf f£(:) is assumed to be continuous and symmetric, i.e., f(x)=f(-x).
The multi-sensor decentralized scheme using identical MLGDS detectors can
be described as follows. At the nth stage (n 2 1), and at each local
sensor, using the current group of No samples, a sufficient test statistic
T (x,) is formed, where

N —N
(o} [e]

X [x X ceer X ] (4.22)
N (n-DN_+1" " (n-2)n 1 77 TN

o
Since the successive observations are assumed to be iid, it follows that
the successive test statistics are iid. Once the test statistic 1is

formed, the folliowing test is performed at each local detector

2 A, stop and decide H
€ B, stop and decide H
Ty ¥y ) lotherwise, discard all previous stages (4.23)
o

and proceed to the next stage -

where A and B are the test thresholds with A > B. The values of A,B, and
No are predetermined such that the prespecified values of a and B are
satisfied and the global ASN of the test is minimized.

Let Py = Pr{TN (EN ) 2 A/HO}, q, = Pr{TN (EN) < B/HO}, and £, =
o o o o




- + . 34 1 = 2 =
1 (p0 qo) Similarly let P, Pr{TNO(gNO) A/Hl},ql PI{TNO(EN; < B/Hl},
and r, =1 - (p1+ql). Since the local detectors as well as their observa-

1
tions are identical at all stages, it follows that the global decision
will be based on any one of the local decisions with equal probability,
i.e.,
Ylj = YZj =L, = YMj r 3 =20,1 (4.24)

Since the local sequential test can terminate at any stage, the error

probabilities can be expressed as

Q
1

2 = ———
P, + I4Po + ryPy + ... (4.25)

and

™
]

+ + rlq. + . .

qQ r.q, r 9 (4.26)
Equations (4.25) and (4.26) give the necessary conditions imposed on A
and B for a particular choice of the package size No to satisfy o and J.
We observe that the event of test termination is independent from stage

to stage, and from one detector to another. Therefore, the global test
length is geometrically distributed random variable. When }% is true, its
pdf is given

1

M M n-
£ L) = - r, .
Tg/Hj(tg/Hj) (1 rj)(rj)

¢ §(t -nN ) , n 21 (4.27)

g o
where 8(-) is the Kronecker delta function and (r?) is the probability
that all of the local tests fail to decide on a hypothesis and must con-
tinue at any single stage. From (4.27), we can express the ASN under the

hypothesis Hj to be
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N
Q
ASN, = E[T /H,] = ——— (4.28)

As was pointed out in ({21], we must select the package size No and the
test thresholds A, and B before the test can be executed. The thresholds
A and B must obviously satisfy (4.25) and (4.26), and, in general, mini-
mize a weighted sum of ASN, and ASN, as given by

1 0

ASN =T ASN, + (1-n) ASN, . m e [0,1] (4.29)

0
An analytical solution of this optimization problem does not appear to be
feasible and, therefore, a numerical solution is necessary. In the
following we propose an algorithm for the determination of the optimal
package size No and the test thresholds.

Step 1: Pick a package of size No = no €(1, N ] (where N is the

FSS FSS

number of observations such that rj = 0), and choose A(no) with

o0
A
Po(no) = an (gno/ﬂo) d Tno <a (4.30)
and A(no) o)
o0
P.(n ) é f ( /H)y 4 T < 1-f (4.31)
10 Tn 3-‘no 1 no )
A(no) o

Step 2: For Po(no) in (4.30) there exists a single threshold §0(no) such

that o is satisfied. Let
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Step 3:

a)

b)

c)

Step 4:

0
9 () = Ep (2, /H) AT
n o} o)
-0 Q
it follows that « is given by
P (n )
o= 0_o (4.32)

PO(no) * qo(“o)

Similarly, let ql(no) Q f (§n /H.) d Tn '

and cbtain gl(no) such that B as given by

q, (n)
1 o
B = (4.33)
ql(no) + Pl(no)

18 satisfied.

We have one of the following three cases:

éo(no) < 51(no). This case represents the situation where A(no)

is higher than the optimal A(no), because any value of B(no),

B < B i i f

By (n,) B (n ) < By (n ), will yield smaller values of «a and B

than specified. Therefore, choose a smaller value of A(no) and

repeat .

B (n) > B (n ). In this case, there is no value of B(n ) that
0 o 1 0o o

will satisfy the required o and B. Therefore, choose a higher

value of A(no) and repeat.

Bo(no) = Bl(no)' This case represents the solution which we are

seeking. Therefore, let A(no)=A(no) and Bl(no) = B(n°)=80(no).

Once the thresholds for the selected no are determined, we

repeat the process to determine the thresholds for (no-l). Com~
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pute the corresponding ASN given by (4.29). If the ASN for n
is less than the ASN for (no-l), we increase no. Ntherwise, we
choose a smaller value of n,

Step S: The algorithm must be continued until for the first time at ng,
the process of increasing or decreasing n is reversed. The
optimal package size is obviously Ns = n;.

The above algorithm is based on the fact that rj is monotonically
decreasing function of the package size No' This fact has been proven
for equal error probabilities and normally distributed observations in
[21]). To prove the above fact in the general case, we proceed as follows.
Let No and (1 - rj(No)) be any package size and the corresponding
probability of decision on one of the hypotheses when Hj is true. Let
(NO+ANO) and [1—rj(No+ANo)) be another package size and the curresponding
probability of a decision on one of the hypotheses. If we view the
increment ANO as an independent package and apply the MLGDS procedure to
the individual packages of size No and ANO, we may write

rj(No + ANO) = rj(No) . rj(ANo) (4.34)
since rj(ANo) is strictly less than one for ANo 2 1, it follows that
rj(No + ANOX < rj(No) and, therefore, the proof is complete.

Returning to the multi~sensor decentralized scheme, we observe from
(4.28) that ASNj is a monotonically increasing function of the number of
local detectors M. In the remainder of this section, we consider the
truncation of the sequential test at the nTth stage. A package of
observations of the same size NO is taken at one of the local detectors

and the following single threshold test is performed.
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2 v , decide Hl
Ty (%g) (4.39)

o o) <V , decide H

0
where v is the test threshold at the (nT+1)th stage. Let aT(NO) and

BT(NO) be the error probabilities at the truncation stage with

2
aT(NO) Pr{TNo(5 ) 2 v/Ho}

N
o
(4.36)

BT(NO) = Pr{TNo(§ ) < v/nl}

N
o}

The overall global error probabilities ao(M) and BO(M) are as given in
(4.14) and (4.15) respectively. Upon writing (4.14) and (4.15)

explicitly and observing that a (n,) =0 and BS(nT) = B, we obtain

n

@ M) =a+ (o - o) (ch T (4.37)
0 T 0
and
M nT
BO(M) =B + ([ST - B () (4.38)
Since rJ < 1, j = 0,1, it follows from (4.37) and (4.38) that the increase
in error probabilities {ao(M) - o} and {BO(M) - B} is a monotonically

decreasing function of M, the number of sensors, as well as the truncation

stage np- Consequently, the M detector system is less sensitive to

truncation.

4.4. The Proposed Truncation Scheme

We have shown that the probability of the global test length Ta
exceeding a specified truncation stage n, is less for the multi-sensor
scheme than for the single detector case. However, Tg is still a random

variable which can assume excessively large values. To avoid this
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problem which will limit the practical use of sequential procedures, trun-
cation is necessary. The truncation problem is not simple to analyze
(31-33] except for the MLGDS procedure in [21].

The proposed truncation scheme for the system under consideration is

as follows: choose A* and B* (the test thresholds) such that

o* e_0 <a (4.39)

and

— < (4.40)

where Px, rx, gx

5 5 and r* are as defined earlier when the thresholds A%,

1’ 1

and B* are used instead of A, and B respectively. The local and global
sequential tests are performed as usual. If no decision is reached up to
the nTth stage, only one local detector is allowed to take one more pack-
age of observations of the same size and test against a single threshold

v as described in (4.35). Writing the expressions for the overall error

probabilities, we obtain

n

M T
= - x
aO(M) a* + (aT(NO) a*)(ro ) (4.41)
and
n
B (M) = B* + (B (N) - Br)(xah T (4.42)
o) T o 1 :
where @ (N) and BT(No) are as defined by (4.36). Since o* < a and B* < P

n
M T , . . :
and the term (r; ) is a decreasing function of nT; there exists a value

of np at which ao(M) < o and BO(M) < B. The smallest value of n, at
which both a_ (M and BO(M) become smaller than « and B will be used for

truncation. It should be emphasized that for different values of o* and
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B*, the solution for nT is different. However, the determination of ax
and B* for some value of the package size is not simple because of the
continuous nature of o* and B*, In other words, all values a* £€(0,a) and
B* £(0,B) are possible. On the other hand, since the ASN of the
untruncated test is less than that of the truncated test for the same «
and B, we can say that a reasonable choice of a* and B* is that which
leads to a small increase in the ASN's over their untruncated counterparts
while maintaining the constraints on a and B. The average sample number

of the truncated test is given by

ASN: = N (4.43)
3 o
when the hypothesis Hj is true, j=0,1.

4.5. Numerical Results

In this section, we present some numerical results for the multi-
sensor decentralized scheme using MLGDS procedure. The observation model
is given by
Hy: %, ~ N(O, c?)

H.: x, ~ N(§, o°)
1

where N(6, o°) is the normal density function with mean 8, and variance

o,

We assume that 6 = 0,2 and ¢ = 1. It is well known that for a = B,
the number of obsgervations necessary for the optimal FSS linear detector

(Neyman-Pearson) is the solution of the equation

= (28 gt . 2
NFSS = [6 ¢ (1 -]

59




where ®(e) is the cdf of the normal density function of zero mean and unit
variance. The ASN of Wald's SPRT is approximated by the following

equation (1}

(1-B) log léﬁ + B log B

l1-a

x
ASN, 82 /20°

In Table 4.1, the optimal package size Nﬁ is determined numerically

for the case of M local detectors, M = 1,2,3. This optimal value depends
on the specified error probabilities o and B as well as the number of

local detectors. The values of N ASNW, ASN (M), and N& are given for

Fss’
some values of o and §. Note that for smaller values of « and f, it

takes more sensors to compensate for the loss due to grouping of data.

Table 4.1: Optimal package sizes Ng and their corresponding ASN (M)

a=P Noss ASN,, N2 ASN (1) N3 ASN(2) N3 ASN(3)
1072 541 225.2 208 312.0 163 219.1 143 181.8
1073 954 344.6 359  492.1 289 359.9 246  305.9
107% 1383 460.4 511  664.2 406 499.4 364  431.1
1070 1818 575.6 659  830.7 534 638.9 485  557.2
1078 2259 690.8 808  993.5 663 776.3 600  683.4

The increase in error probabilities as a result of truncation is
demonstrated by the numerical results in Table 42. The package size is

set at Ni (given in Table 4.1) irrespective of the number of local

detectors. The central test is truncated at the third stage. The




resulting error probabilities a_ and Bo' and the ASN of the truncated

T .
test (ASN') are given for some values of & and B.

Table 4.2: Overall error probabilities ao and ﬁo, and the ASN for
the truncated test
ONE DETECTOR TWO DETECTORS THREE DETECTORS
T T T
=B ao-ﬁo ASN ao—Bo ASN ao-Bo ASN
-2 -2 -2 -2
10 1.24X190 308.1 .009%x10 234 1.003%10 216
-3 -3 -3 -3
10 1.55x10 489.5 .011x10 387.3 1.0002x10 366.2
-4 -4 -4 -4
10 2.45%X10 662.3 .018x10 539.7 1.0002x10 527.3
-5 -4 -5 -5
10 5.52x10 829.2 .04x10 688.4 1.0004x10 664.9
-6 -6 -6 -6
10 15.56x10 992.3 .095%x10 837.2 1.0006x10 813.3

The truncation scheme proposed in Section 4.4

distributed system of two and three local detectors.

are the opt_mal for the untruncated test as given in Table 3.1.

is applied to the
The package sizes

However,

the sequential portion of the test is designed to satisf: as and Bs (as <

o, BS

< B) and the truncation stage M is obtained by requiring the overall

error probabilities a  and Bo to be less than or equal to & and B respec-

tively. 1In Table 4.3, we present values of M, ASN, ASNT, o Bo, as, and

Bs as obtained for different values of a and §.
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Table 4.3: Overall error probabilities and ASN's of the proposed trun-

cation scheme.

TWO SENSCRS THREE SENSORS
T T
=B M ASN ASN as-Bs ao-Bo M ASN ASN aS-Bs o BO
-2 -3 -3 -2 -3
10 © 5 219.1 220.2 9.79%x10 ~ 9,9x10 5 181.8 182.8 9.81X10 9.86x10
-3 -4 -4 -4 - -5
10 © S5 359.9 361.5 9.74x10 = 9 88x10 [{5S 305.9 307.2 9.72x10 9.72X10
-4 =5 -5 =5 -3
10 ~ 6 499.4 501.5 9.65x10” 9.76x10 |5 431.1 432.6 9.65x10 9.94x10
-5 =6 -6 -6 -6
10 © 6 638.9 640.9 9.58x10° 9.81x10 |6 557.2 559.2 9.62x10 9.69x10
-6 -7 -7 -7 -7
10 7 776.3 779  9.56x10 ' 9.64x10 '[|6 683.4 685.7 9.58x10 9.86x10

4.6. Discussion

In this chapter, we proposed a simple multi-senscr decentralized
sequential detection procedure and derived the expressions for the ASN's,
The case when each local detector employs the MLGDS procedure of Lee and
Thomas (21] is considered in detail and a truncation scheme is analyzed.
We showed that the performance of the multi-sensor scheme is a mono-
tonically increasing function of the number of local sensors used. The
increase in error probabilities due to truncation of the sequential
procedure at any stage is shown to be a decreasing function of the number
of local detectors. The numerical results presented show clearly the
improved performance and support the analysis. 1In the simple multi-sensor
scheme, each local detector was designed independently to satisfy the

specified error probabilities, i.e., no coupling between lccal thresholds
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was allowed. It is expected that if coupling between local thresholds is
allowed and local decisions are all taken into account in the process of
arriving at the global decision, the resulting system performance will be
further improved. In the next two chapters, we will study distributed
sequential detection systems in which the local thresholds are coupled and
all local decisions are fused at the global decision maker to arrive at

the global decision.
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CHAPTER FIVE

A DECENTRALIZED SEQUENTIAL TEST
WITH DATA FUSION

5.1. Introduction

In Chapter Four, we studied a simple multi-sensor sequential detec-
tion procedure and showed that its performance improves monotonically
with the increase in the number of sensors used. The sequential test in
Chapter Four is carried out locally and only local decisions are communi-
cated to the global decisior maker. The local thresholds are not coupled
because no explicit data fusion rule is employed. All the thresholds are
designed to satisfy the global error probabilities a and B.

In this chapter, we allow the local thresholds to be coupled. Each
local detector performs a £F iT based on its own observations, and
communicates its decision to the global decision maker (fusion center)
whenever it decides on a hypothesis. Nothing is communiczted if the local
decision is to continue. The global decision maker combines the incoming
local decisions according to a predetermined fusion rule to come up with
the global (final) decision. In Section 5.2, we describe the sequential
detection system, and define the observation model. The global error
probabilities are functions of the local error probabilities and the
fusion rule. An analysis for different possible fusion rules is presented
in Section 5.3, with emphasis on the relationship between the local and
global error probabilities. Moreover, the expected global test length
is derived in terms of the local error probabilities and the pdf's of the

local test length. The case of three local detectors is considered
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briefly in Section 5.4. An example is presented in Section 5.5 to
illustrate the design of the local tests for prespecified values of o and
B, and for different fusicn rules. In Section 5.6, we discuss the re-

sults obtained in this chapter.

5.2. A Description of the Distributed System

Consider the problem of testing a simple hypothesis H_ versus a simple

0

alternative Hl' The system consists of two sequential detectors and a

global decision maker as shown in Fig. 5.1. Let f(x,ex) and £f(y, Oy)
denote the pdf's of the random variables x and y, which represent the
observations of the first and second sequential detectors respectively.

Let K, be the hypothesis that Gx =0

0 6 =290 and H, the hypothesis

x0" Ty yo' 1
= = +} ' 1
that ex le and Gy Byl. Thus, the pdf's of x and y are given by f(x,

exi) and f(y, eyi) when Hi is true, i=0,1. The successive observations on

A
x are denoted by xl,xz,..., xn = §n(n 2 1) and they are assumed to be
samples of iid random variables. Similarly, the successive observations
on y are denoted by yl,yz,..., yn é Y, (n 2 1) and they are assumed to be
iid random variables. For any two positive integers n,m, the joint pdf of
En and xm conditioned on the hypothesis Hi is given by

n

m
£ = [Tex. 0.0 - ] €, .0 .i=01 (5.1)
T N = U A &

Based on its own okservations, each local detector performs an SPRT. The
SPRT at the first detector is defined as follows: Two positive constants

Al and Bl(A1 > Bl) are chosen and at each stage n, n 2 1, of testing, the

likelihood ratio function Ax is computed:
-n




xl,xZ, -
—— 1 Local detector #1

Uy
Global
Decision Ug
Maker >
U

yl,yz, C .
—— > Local detector #2

Fig. 5.1: A distributed system consisting of two local
detectors and a global decision maker.
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(5.2)

The likelihood ratioc in (5.2) is compared with the constants (thresholds)

Al and Bl as follows

A decide H

1’ 1
81' decide HO (5.3)

otherwise, continue

\%

N

A
X
—n

A similar SPRT is implemented at the second detector with A2 and B2

as the thresholds. The choice of the thresholds Ak and Bk,k =1,2,

depends on the values of the local errcr probabilities @

. and Bk. It has

been shown [1] that the thresholds are approximated in terms of ak and Bk

as follows:

a = (1 - Bk)/a

(ko= 1,2 (5.4)
B, = Bk/(l - o)

A more convenient local test can be obtained by taking the logarithm

of both sides of (5.3). The resulting tests at the two detectors are
éiven by
n 2 log Ak , decide H1
) Vs | € log B , decide Hy ,k = 1,2 (5.5)
where i=1 otherwise , continue.
v.. % log (£(x., 8 ) /f(x,, 0_)]
13 3 x1 3j x0
and
v, 8

. 1 f(y., 6 f(y., ©
23 og | (yJ Yl)/ (yj, yO)]

k

functions of the local thresholds Ak and Bk' k = 1,2. By adjusting the

As mentioned above, the local error probabilities a and ﬁk are
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local thresholds we can vary the corresponding local error probabilities.
Since the observations are independent from one local detector to the
other, the local decisions are also independent. As in the distributed
fixed-sample~size systems using Neyman-Pearson criterion, we can not
obtain the global error probabilities without the knowledge of the fusion
rule. In other words, the global error probabilities are functions of the
local error probabilities and the fusion rule. Conversely, given the
global error probabilities a and B, we can choose the fusion rule first,
and then solve for ak and Bk' k = 1,2, or equivalently Ak and Bk such that
o and B are satisfied and the global average sample number is minimum.

The global average sample number ASNg is defined as the average number of
observations necessary for reaching a global decision. Clearly, an
optimal solution will require the choice of the fusion rule among all
pcssible fusion rules and solving for the local thresholds such that ASN
is minimized. However, for a distributed system consisting of two local
detecteors and binary local decisions (assuming that local detectors have
reached a hypothesis decision), we cbserve that the number of possible

binary fusion rules is

4 4 4 4!

4 _ _ !

2 “Y [1) '7- it(a-i)!
I=0 I=0

For sequential hypothesis testing, the fusion rule can be ternary to

allow the occurrence of the event continue. In this case, the number of

possible fusion rules is obviously more than 2% and is given by

__..__3_'__ = 34

5 T e A

1320 it3!(4-1i-3)!

For an optimal solution, all possible rusion rules must be enumerated and

the one yielding the lowest ASNg must be chosen. 1In the following

section, we study only three different possible fusion rules and evaluate

their performance.




5.3. Analysis of Some Possible Fusion Rules

The fusion rules of interest are those which take into account the de-
cisions of both local detectors, and satisfy the monotone property of thLe
likelihood ratio function at the global level. Therefore, we consider

only three fusion rules and analyze them,

i) AND Fusion Rule: According to this fusion rule, the global de-

cision is Hl(ug=H1) if and only if both local decisions are Hl(ul=Hl and

u_=H_), i.e.,

H if u_=H, and u,=H

1’ 11 2 1

A . _ -
ug = f(ul,uz) HO' if ul = HO or u2—H0 (5.6)

continue, elsewhere

From (5.6), it follows that the global error probabilities are given by

e=0 "o (5.7)

(1-51) . (1-32)

(1-B)
It is clear that depending on the first incoming local decision, the
global decision will be reached no later than the decision time of the
second incoming lccal decision. Since an SPRT terminates in a finite
number of steps (stages) with probability one (1], it follows that a
global decision will be reached in a finite number of steps with proba-
bility one.

From (5.7), we observe that ak > o and Bk <B, k=1,2. Also, since

a, Bk << 1 we can further approximate (5.4) to obtain
1 1
2= ¢ =2
By v A (5.8)
x < x
B, Bk B=z=sB
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From (5.8), we observe that the use of AND fusion rule requires lower
local thresholds than the centralized test. This will lead to a shorter
local average decision time (ASN' .aen Hl is true and a longer local

average decision time when HO is the true hypothesis.

The two main functions usually used in evaluating the performance of
an SPRT are the power function and the ASN function. The power function

PDg(GX,OV)is defined as the probability of deciding Hl when the actual

parameters of the distributions are 8 and 8 instead of 8 . and 6
X Y x1 Yi

respectively. From (5.7), it follows that ng(ex,ey) is simply the
product of the local power functions P_ (0 ) and P_ (0 ) at the first and
Dx x Dy vy

second local sequential detectors respectively. Therefore, we can write

ng(ex,ey) = PDx(ex) . PDy(ey) (5.9)

The computation of PDg(ex’ey) is thus achieved by computing P x(ex) and

D

PDy(Gy) at the local detectors exactly as described in [1].

The second function of interest is the expected duration of the global

test denoted by E[Tg/Hi] when Hi is the true hypothesis. Let Tk denote

. i i i i
the test length of the kth,k=1,2 sequential detector. Let A:, B:, Cn’ Dn'

i
= > = =
and Fn be the events that {T1 n, T2>n/Hi}, {T1 n, T2 n/Hi}, {T1 n,

T.< < = =T = i .

5 n/Hi}, {Tl n, T2 n/Hi}, and {T1 T2 n/Hi} respectively. Observe that
if a glsbal decision is reached at the nth stage, then one of the above
mutually exclusive events must have occurred. When the first incoming

decision is HO the global test will terminate without the need to wait for

: . i
the other local detector to decide. This corresponds to the events An and

i . . . o .
Bn' On the other hand, if the first incoming local decision is Hl, then

the global decision maker must wait for the other local detector to




. . i i .
decide. This corresponds to the events Cn and Dn' When both decisions

arrive at the same time, the event F_ occurs. To compute the proba-

8D

Cy e i i i i .
bilities of the events An’ Bn’ Cq, D~ and Fn the exact probability

distribution functions of T1 and T2 when Hi,i=0,1, is true are required.
The distribution function of the test length Tk is known [1,28,29] only

when the increments Vi @s defined in equation (5.5) are integral

multiples of a constant. In this case, the exact probability distribution

function of Tg can be derived. Let ai(n) and B;(n) be the probabilities
that the kth sequential detactor terminates at the nth stage when Hi is

true accepting Hl and HO respectively, i.e.

i
ak(n) Pr{Tk-n, u, =

Hy/Hg}
k=1,2 and i=0,1

nz21l (5.10)

1>

i
Bk(n) Pr{Tk~n, uk—Ho/Hi}

. n , . n
Let & (n) =) o (j) and fi(n) =) PB(3). From (5.6) and (5.10), it
k k k k
=1 =1
follows that the probability of reaching a global decision at the nth

stage when Hi is true is given by

_ _ @i =i _ i i o~ _ i
Pr{Tg—n/Hi} Bl(n)[l a, (n) Bz‘“’] + Bz‘“’ (1 - o (n) B1<n)l
i i ~i ~i ~i ~i
+ [Bl(n> + 0 (n)] &y (n-l) + al(n-l)tﬁz(n) t ey (n))
i i i i
+ (o] (n) + Bl(n)] (o, (m) + Bz(n)] (5.11)
Simplifying (5.11), we obtain
_ _ @t Rt i &l
Pr{Tg—n/Hi} Bl(n){l Bz(n 1)) + Bz(n)[l Bl(n)]

i ~i i ~3i
+ al(n) az(n) + az(n) al(n—l) (5.12)




To simplify the analysis, we restrict the local detectors to be
identical. 1In this case, Tl and T2 are identically distributed under
both hypotheses. Therefore, equation (5.12) can be simplified further to
obtain
Pr{Tg=n/Hi} = Bi(n)[z—ﬁi(n) - 6i(n—1)1 s ot (@ - atin-1)) (5.13)
where ai(n) = ai(n),Bi(n) = Bi(n), &i(n) = ai(n), and Bi(n) = Bk(n),
k=0,1. Equation (5.13) can be used to numerically compute the average
global test duration. However, it does not provide enough insight to the
problem. We observe that 1if Hi is the true hypothesis, then the obtained
local decision will satisfy the lccal error probabilities. Therefore, we
can write

Pr{T_=n/H} = Pr{u =H /R } - Pr(Ai) + pr{uy=H /H} - Pr(Bi')

(5.14)

i i i
= . C + =
+ Pr{u2 Hl/Hi} Pr( n) Pr{ul Hl/Hi} . Pr(Dn) + Pr(Fn)

From the definitions of the minimum and maximum of two random variables
{29}, we observe that
Pr{min(T_,T.) = n/4,} = Pr(Ai) + Pr(Bi) + Pr(Fi)
1772 i n n n
and
Pr{max (T ,T.) = n/H,6} = pr(ci) + Pr(Di) + P (Fi)
1’72 i n n ALY
Therefore, it follows from (5.14)-(5.16) that Tg is given by
mln(Tl,Tz) with probability Pmin(hi)

T = (5.17)
max(Tl,Tz) with probability Pmax(Hi)

when H, is the true hypothesis, and where P, (H,) = Pr{(u, = H /H, ) =
i min' i 1 0" i
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Pr(u2 = HO/Hi) Pr(uz = HO/Hi) and Pmax(ﬁi) = Pr(ul = Hl/Hi) = Pr(u2 =

Hl/Hi) 4 Pr(uE = Hl/Hi). Equation (5.17) shows that the global test
duration is either the maximum or the minimum of the local test durations
depending on whether the first incoming decision is H1 or HO respec-
tively. From (5.17), it follows that the expected global test duration

conditioned on the hypothesis Hi,i=0,l, is as follows:

E[Tg/Hi] = Pr(uE=HO/Hi) . E[mln(Tl,Tz)/Hi) +

Pr(u£=H1/Hi) . E[max(Tl,Tz)/Hi] (5.18)

Thus, the problem reduces to finding the expected values of the minimum
and the maximum of the local test lengths. Due to the functional
complexity of the distribution of T1 and T2 under both hypotheses, an
analytical solution does not seem feasible. However, the numerical compu-

tation is relatively simple and it can be performed via matrix multiplica-

tions (28,29].

ii) OR Fusion Rule: 1In this case, a global decision in favor of H

1
is declared if any of the local decisions is Hl’ while Ho is decided
globally if and only if both local decisions are HO. i.e.,

A Hl , if u1=H1 or u2=Hl
= = i = = 5.1
ug f(ul,uz) HO , if u Ho and u Ho ( 9)

continue, "elsewhere

As in the case of AND fusion rule, the OR fusicn rule will reach a global
decision no later than the time at which the second local decision
reaches the fusion center. Since the local decisions are reached in a

finite number of steps with probability one, it follows that a global
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decision will be reached after a finite number of steps with probability
one also. Therefore, we can express the global error probabilities in
terms of the local error probabilities using (5.19) as follows

(1-a)

(1—a1) i (l-az)
_ (5.20)
B=8, B8,
From (5.20), it is clear that the global power function ng(ex,ey) as de~
fined earlier can be expressed as the product of the local power func-
tions P_ (0 ) and P_ (6 ). In particular, we have
X X Dy vy

D

{1 - PDg(Gx,ey)} = {1 - pr(ex)} . {1 - PDy(Qy)} (5.21)

Therefore, the computation of the power functions is similar to the AND
fusion rule and it can be done as in (1] at the local level. Equation

(5.20) can be used to show that the OR fusion rule increases the local

thresholds. Thus, the average local test length increases when H, is

1

true, and decreases when HO is true.

The exact probability distribution function of the global test length
Tg can be derived provided that the exact distributions of the local
tests are known. In a manner similar to the AND fusion rule, we can show
that

i i i i
Pr{Tg—n/Hi} = al(n)[l - ﬁl(n-l)] + az(n) [l-dl(n)]

+ B;(n) ﬁ;(m + B;(n)ﬁi(n—l) (5.22)

If we assume identical local detectors and use the fact that local
decisions must satisfy the local error probabilities, we can easily show
that the global test duration is given by (5.17). However, for the OR

- - - - o = A
fusion rule Pmin(Hi) = Pr(u1 = H /Hi) = Pr(a2 = H /Hi) = Pr(u

1 = Hl/Hi) and

£




P (H,) = Pr{u, = H /H,) = Pr(u, = H./H,) é Pr(u
i 0" i i

max 1 2 0 = H /Hi)‘ Hence, the

average global test duration is given by

E[Tg/Hi] = Pr(uZ=H0/Hi) . E[max(Tl'TZ)/Hi] +

Pr(u =H1/Hi) . E[mln(Tl,Tz)/Hi] (5.23)

£

which is similar to (5.18) except for the fact that H, is replaced by Hl

0

and vice versa.

iii) Three-Way Fusion Rule: According to this fusion rule, a

global decision in favor of Hi is declared if and only if both local
decisions are Hi’ i=0,1. If the local decisions are not the same, the
global decision maker can either use a randomized decision rule to stop
the test, or it can repeat the local sequential tests without keeping the
previous test results. We first consider the randomization option, and

in this case the three-way fusion rule is given by

4 1 111 1 3 = =
Hl, with probability 1 if u, u2 Hl

Hl, with probability ¥ if u, # u,

with probability (1-y) if u, # u (5.24)

A
ug = f(ul,uz) = < H 1 5

ol

H with probability 1 if u, =u,=H

0’ 1 720

\ continue, elsewhere.

Once again, because the global decision according to (5.24) is reached no
later than the time at which the second incoming local decision is
obtained, it foilows that global decision will be obtained with proba-
bility one in a finite number of steps. The global error probabilities

are expressed in terms of the local error probabilities as follows:
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a=oda, + yal(l-az) + y(l—al)a2

172 (5.25)
B =8B, + - 1-p B, + (1-1IB, (1-B,)
Simplifying (5.25), we obtain
a = (1-27)a1a2 + 7(a1+a2)
(5.26)
B = (2y-1)B,B, 5 (1-7) (B +B,)
Therefore, for a,=0, and Y = 0.5, we observe that each local detector

172

must satisfy the global error probabilities. Because the global test can
not terminate before both local decisions are obtained, it follows that
the global average test duration is higher than that of a single
sequential detector. In other words, the fusion rule in (5.24) will de-
grade the performance instead of improving it, so we don't consider it
any further. Turning our attention to the second option, we can formu-

late the fusion rule as follows

Hl if ul=H1 and u2=Hl

A .
ug = f(ul,uz) = HO if ul Ho and u2 Ho (5.27)

continue, elsewhere.

Let a trial be defined as the process of starting the local sequential
tests until the two local decisions are reached. Note that if the two
local decisions disagree, more than one trial will be required. The
successive trials have identically distributed random lengths under the
hypothesis Hi' i=0,1, as a consequence of the observations being
identical. Each trial is guaranteed to terminate in a finite number of

steps w.-th probability one. However, the probability is one that a

series of repeated trials will terminate within a finite number of trials,
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it follows that the sequential process will terminate in a finite number
of steps with probability one.

The global error probabilities can be obtained by summing their
values at all trials. To this end, let pi be the probability of a suc-
cessful trial and qi = l—pi the probability of an unsuccessful trial when

Hi is true. We obtain

Py = 0,0, + (1-a,) (1-a,)

BB, + (1-B)(1-B)

(5.28)

1]

Py

The probability of error of the first kind « is therefore given by

a.a
b= =2 (5.29)

= + 2 PPN
o= 0,0 +oa .3 o

1% %9, @

Similarly, the probability of error of the second kind B is given by

PiPy

- 2 -
B =B, +BBa +BBa] +... b (5.30)

The global power function PDg(ex’ey) can be derived in the same way used
in deriving (5.29) and (5.30). Recalling the definition of PDg(ex’ey)
and utilizing the assumed independence of local observations, we can

express P

D

(6 ,89 ) in terms of P
g X Y D

(6 ) and P_ (@ ) as follows
X X Y Y

D

P _(68) - P_(0)
P (8,0 ) = Dx _x Dy y (5.31)
g x'y

D PDx(ex) . PDy(Gy) + {1 - PDx(Gx)][l - PDy(Gy)]

where the denominator of (5.31) is simply the probability of a successful
trial when ex and ey are the true values of the local parameters. From

(5.31), it is evident that the computation of PDg(ex’ey) is equivalent to
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the computation of both P_ (6 ) and P_ (8 ) as described in detail by
Px x Dy 'y
Wald in {1}.

The expected duration of the global test when Hi is true is the next
function to be derived. Let the random variable representing the number
of observations in the mth trial when Hi is the true hypothesis be
denoted by Dim,i=0,1; m21. Recall that the random variables Dim(mZI)
are iid with an expected duration E[Di] given by

= .32
E[Di] E[max(Tl,Tz)/Hi] (5.32)
where (5.32) is derived by observing that for a trial to reach an end,

both local decisions must be reached. The conditional expected global

test duration can be written as follows:

E{T /H.,,m) = m E(D,) (5.33)
g i i
. .  q (m-1)
However, E[Tg/Hi,mJ occurs with probability qi pi. The expected

global test duration can be obtained by taking the expected value of

(5.33), and the result is

i (m=1) E{D,]
EIT /H,] =) m - ED,] P (5.34)
=1 * * Py

For sufficiently small error probabilities, we observe from (5.28),
(5.29), and (5.30) that for o, =0, =0, and B1=B2=Bz, we have P; 21,

o, > a, and Bz > B. Hence, unlike the two previous fZusion ruies, the
effect of this fusion rule is to decrease the upper thresholds and to
increase the lower thresholds which in turn decreases the average local

test length under both hypotheses to a value smaller than that of a

single sequential detector.
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5.4. The Three Local Detectors Case

In this section, we consider extending the distributed system in
Fig. 5.1 to include three local sequential detectors as shown in
Fig. 5.2. The successive observations at the third sequential detector
are denoted by ml,w ,...,wn Q Qn(nZI) and they are assumed to be iid
random variables. We denote by f (0, Ow) the pdf of the random variable
W representing the observations at the third local detector and assume
that ® is independent of both x and y. Each local detector carries out
an SPRT based on its own observations as described in Section 5.2. As is
evident from the results of distributed FSS systems (11] and the dis-~
cussion at the end of Section 5.2, the number of fusion rules increases
quite rapidly as the number of local detectors increase. In our work, we
will confine our analysis to a generalization of the three-way fgsion
rule which is symmetric with respect to the hypctheses. Therefore, a
global decision in favor of the hypothesis Hi will be declared if and
only if the three lccal detectors have reached their decisions and they
are all favoring Hi,i=0,1. The fusion rule car. therefore be formulated

as follows:

Hl , if ul=u2=u3=Hl

A . o
ug = f(ul,uz,u3) = Ho ,1f ul—uz-u3-H0 (5.35)

continue, elsewhere

As in the case of two local detectors, we define a trial as the
process of starting the local sequential tests until the three local
decisicns are reached. If the local decisions disagree, we begin another
trial ignoring the results of previous trials. Let aj and Bj be the

error probabilities at the jth local detector, 3=1,2,3. Let pi be the




xl,xZ, e

Local detector #1

Uy
u, Global
yl’y'Z’ . e
——— > Local detector #2 > Decision
Maker
u3
Wl,Wz, " a s
————»{ Local detector #3

Fig. 5.2: A distributed system consisting of three local

detectors and a global decision maker.
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probability of achieving a successful trial and q; = l—pi when Hi is

true, to obtain

3 3

Py = TT o, + TT (1 - a.)
3=1 j=1

(5.36)

3 3

e = Il B+ T -8y

=1 3=1 ?

The global error probabilities can be derived following the same approach

used to derive (5.29) and (5.30), the results are given by the following

equation

o

3
| aj) /p0

.
[

(5.37)
3
B=(]]

Bj] /Py

(W}
=)

The global power function PDg(ex’ey’ew) is a function of the local pcwer

functions PDg(Gx), PDy(Gy) and po(em) as given by

PDx(ex) PDy(ey).PDO)
Dx(ex)PDy(ey)PDm(ew) + {1~ PDx(ex)][l - PDy(Oy)][l-PDm(Gw)]

(5.38)

(Gm)

PDg(ex'ey'em)= P

If we assume identical observations at all local detectors and equal
local performance, i.e., aj=a2 and Bj=B£,j=l,2,3. It follows that the
local test lengths Tj,j=1,2,3, are identically distribuced under the

hypothesis Hi' i=0,1. Moreover, we can :pproximate

a = a; or @, 2 3o (5.39)
x Q3 x 3R
BB, or B, = VP
which can be used to show that E[Tj/Hi], j=1,2,3; i=0,1, is approxi-
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mately equal to one-third of the corresponding value in the centralized
(one detector) case.

The average global test duration E[Tg/Hi] when Hi is the true hypo-
thesis can be derived in almost the same way used for the case of the
local detectors. However, the derivation is more complicated due to the
fact that our trials are of two different types each requiring, on the
average, different number of observations. In particular, if the first
two incoming local decisions are different, then a trial can be
terminated requiring on the average EZi observations. On the other hand,
if the first two incoming local decisions are the same, then a trial must
continue until the third local decision is obtained. Let §3i denote the
average number of osbservations in the trial in which the first and second
incoming local decisions are identical. Let §2i aid iBi denote the proba-
bility that when Hi is true, our trial is unsuccessful and requires EZi

and 531 average number of observations respectively. Based on that, we

can write

T i with prob. 1-72i-73i

3

mng/Hl] = T2i + B[Tg/Hi] , with prob. ZZi 1=90,1 (5.40)

'I‘3i + E[Tg/Hi, , with prob. Y3i
Simplifying (5.40), we obtain
. ' . Y.,
E(T /H,) = T,.(1 + 34 1+ T, [ 24 ] (5.41)
g i 3i 1 -5 o 21 1 - =
Y35 = ¥y Y33 7 ¥ps

To simplify the numerical computation, we can derive an upper bound on

E[Tg/Hi]' The upper bound is arrived ¢. Ly equating EZi to §3iand observ-

ing that %3i 2 %2‘ where equality holds if and only if the last two
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incoming local decisions are obtained at the same time. By recognizing

~

T3i to be the expected value of the maximum of the three local test

lengths, we arrive at the following inequality

E[max(T,,T.,T.)/H.]
BT /H,) < 1 2 3 3 (5.42)

Py

The inequality (5.42) is tight for sufficiently small local error proba-
bilities; in this case both §3i and §2i are extremely small and the aver-
age global test length is dictated by the probability of a successful

trial P, = 1.

5.5. Numerical Example

We consider the case of two identical local detectors. The observa-
tions are assumed to be iid both spatially and temporally. Let the

observation model be as follows:

X, = Yi -~ B(Po)

p,. = 1-P, # 0.5

n
>
n

Yi - B(Pl)

where B(Pi) ig a Bernoulli random variable with parameter Pi. Therefore,
the local test can be formulated as a random walk on the states numbered
0,1,2,...,N. The states 0 and N are absorbing states with locail
decisions HO and Hl respectively while the remainder of the states are

transient states. Starting the process at the kth state, it is known

(29) that




((l-P.)/P.)k - ((1—5’.)/?.)N
it i it

Pr(u, = H /H,) =
L0 1 - ((1-e,)/p )"
i i
and
Pr(uZ = Hl/Hi) =1 - Pr(uz = Ho/Hi)
In the example we choose P, = 1-P_ = 0.6667. The values of k and N are

1 0

chosen to yield the desired values of the local error probabilities al
and ﬁz. Let R = [00 ... 1 ... 0) be a row vector of size N+1 whose
elements are all zero except at the kth position. Let C = (10 .. 001] be
a column vector with elements that are all zero except for 1 at the Oth
and the Nth positions. Let gi be the transition probability matrix ([29]
when Hi is true, i=0,1. As was pointed out in [29], the probability

that the jth local test will terminate before or at the nth stage is given

by

Using the concept of tail probabilities (29), the expected value of 'I‘j

when Hi is true can be derived as follows

o0

z: er(1, > n/H}

E[{T./H,]
] 1

o)
]
o

Therefore, we can write

E(T./H.]
J 1

]
il

~—
o

i
I
o

t=

10
——

which gives the ASN of the jth local test when Hi is the true hypothesis
To derive the ASN's of the min(Tl,Tz) and the max(Tl,Tz), we observe that

Tl and T, are iid, and hence
<
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Pr{mln(Tl,Tz) > n/Hi}

i
p——
-

i
o
o

[
10
|ro
0

Pr{max(Tl,Tz) < n/Hi}

From those two equations and using once again the tail probabilities, we

obtain
s - - - Noy2
E(min(T,,T,) /H,] z: {1 -RrEC)
n=0
Efmax(T,,T,) /8,1 = ) {1 - [RECI?}
n=0

The numerical results obtained for a single detector, the simple multi-
sensor scheme in Chapter Four, and the various fusion rules are given

below for some values of a and PB.

Single Detector The Simple AND OR Three-Way

@ =P = 3.891 x 1075  Scheme

BLT /H)  23.8) 16.89 16.44  18.56 15.98(67%)
E(T /8] 23.82 16.89 18.56  16.44 15.98(67%)
@ =2.43%10"% B = 3.905x107°
B(T /H] 35.76 26.97 23.75  27.85 24.18(67.63%)
BIT /H)) 20 16.94 19.32  16.59 16.25(67.7%)
@ =P = 1.526 x 10>
B(T /H,] 48 37.5 31.05 40.04 31(64.5%)
BT /H)) 48 37.5 40.04 31.05 31(64.5%)
@ = 5.96x10° %, B = 1.526x10”>
B(T /H] 7171 58.95 44.9  61.28 44.9(62.4%)
E(T /M) 48 37.53 40.17  31.00 31.03(64.6%)
@ =P =2.33x 10"
BIT_/H) 96 80.79 58.45 83.54 58.45(61%)

E[Tg/Hol 96 80.79 83.54 58.45 58.45(6.%)




5.6. Discussion

A distributed system consisting of two local sequential detectors and
a global decision maker was considered. The global error probabilities
are shown to be functions of the local error probabilities as well as of
the fusion rule used. The global power function was shown to be a simple
function of the local power functions for a given fusion rule. For two
identical local detectors, the average global test length was derived in
terms of the local test lengths. The case of three local detectors was
considered briefly and an upper bound was derived for the average global
test length. The numerical results obtained show that the AND fusion

rule performs better than the OR fusion rule when H, is true, and vice

1
versa when HO is true. On the other hand, the Three-Way fusion rule com-
bines the advantages of both fusion rules and performs quite well under
both hypotheses, with better performance for smaller error probabilities.
Moreover, the Three-Way fusion rule has better performance than the

simple sequential scheme presented in Chapter Four where no explicit

fusion rule was employed.
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CHAPTER SIX

A MODIFIED DISTRIBUTED SEQUENTIAL
HYPOTHESIS TESTING PROCEDURE
WITH DATA FUSION

6.1. Introduction

In binary signal detection theory, sequential hypothesis testing pro-
cedures (1,2] provide a significant advantage over fixed-sample-size (FSS)
test procedures. For the same error probabilities o and f§, the sequential
procedures, on the average require substantially less number of observa-
tions. However, the sequential procedures are usually not easy to imple-
ment and require a random number of observations before they terminate.

In other words, the sequential procedures do not give any definite upper
bound on the number of observations required for decision. Such a
situation will limit the practical use of sequential proceduces and
necessitate truncation. The truncation problem [31-33] 1s not easy to
analyze except for the simple procedure given in [21].

The SPRT was generalized in [25,26) for the detection of M hypotheses
with different means of the normal distributicn. As was pointed out in
(25}, the generalized SPRT is not easy to implement, and its performance
is difficult to evaluate. Furthermore, it should be mentioned that the
sequential test in (25] is not guaranteed to be optimal. In ([27],
Fleisher et al. generalized the memoryless grouped-data sequential (MLGDS)
test procedure of Lee and Thomas [21] to the case of multiple hypotheses
with different means/variances of the normal distribution. The sequential

testinc procedure in (27] exhibits a performance superiority over the
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optimal FSS test while maintaining a much simpler structure and analysis
than the sequential test in ({25].

In Chapters Four and Five, we have studied some decentralized sequen-
tial hypothesis testing schemes. The numerical results obtained show that
the scheme in Chapter Five has a better performance than that in Chapter
Four. However, the derivation of the average global test length is quite
laborious and no simple truncation scheme is available. Motivated by
this, we consider another decentralized sequential testing procedure.

The distributec sequential testing procedure is a generalization of the
MLGDS procedure in [21] to a distributed environment as described and
analyzed in Section 6.2, for the binary hypothesis case. In Section 6.3,
we consider the case of M hypotheses. Section 6.4 contains a
description and analysis of the truncation scheme applied to the binary
hypothesis case. Numerical results are presented in Section 6.5, and
finally this chapter is concluded in Section 6.6 where we discuss our

results.

6.2. The Modified Distributed Sequential Test for Binary

Hypothesis Testing

We consider a distributed system consisting of two local detectors
(Lbs) and a global decision maker (GDM) as shown in Fig. 6.,1. The LDs
are not allowed to communicate with each other. Binary hypothesis test-
ing problem is considered with equally probable hypotheses. At any
observation time, each LD takes a package of observations of size No' and
makes a decision based on its own observations, The local decision is
either in favor of one of the two underlying hypotheses, or an indecision

{ignorance) is declared. The two local decisions are commun.cated to the
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Xl,xz, v
————>1  Local detector #1

3!
Global
Decision
Maker
L)

yl,yz, e
——————>{ Local detector #2

Fig. 6.1: A distributed system consisting of two local
detectors and a global decision maker.
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GDM, which in turn combines them according to the specified fusion rule
to come up with the global decision. 1In this chapter, we are interested
in sequential testing procedures. Therefore, the global decision is
either one of the hypotheses or is to continue. When the global decision
is in favor of one of the hypotheses, the local as well as the global
tests are terminated. However, when the global decision is to continue,
the local MLGDS tests are repeated discarding the results of all previous
stages.

Let AR be a sequence of iid random variables which represent
the successive observations at local detector #1. Similarly, let
Yyr¥oreoo be a sequence of iid observations at local detector #2. The
observations are assumed to be spatially iid. The hypothesis HO repre~

sents the absence of a signal while the alternative Hl represents the

presence of the signal. The cobservation model is given by

H X, =06 +n
1 1 i
y. =6 +n iz (6.1)
i i
HO xi = nl
Yy 50y

where 6 is the term representing the signal and ng is the additive noise
component. We assume that the noise is normally distributed with mean
zero and variance 02, i.e., ni - N(O,GZ). The observations are taken at
the LDs in groups of size No each. Therefore, the test statistics at

LD # 1 and LD # 2 are given by

nN
o]

T, (%, ) = Yoo x, (6.2)
o o i=(n-I)N +1
and °

Ty ¥y ) = ) Y. (6.3)




respectively. Based on the local sufficient test statistics Ty (5N ) and
o o
TN (XN ), the hypothesis testing problem is modeled by:

o o

. 2
Hyt Ty (%) - NN , N o%)
[e] [e)
2
TN (xN ) . N(Noe ' NOO )
[¢) Q
. 2
Hor Ty (xg ) - NGO, N 0P (6.4)

2
Ty (g ) ~ N(O N 0%)

For equal global error probabilities a and B (where o is the probability

of deciding H, when H, is true, and B is the probability of deciding H

0 0

when Hl is the true hypothesis), it follows from the symmetry of the
problem that the local thresholds are symmetric around the point NOG/Z.
Let Aj and Bj' j=1,2, be the upper and lower thresholds at the jth LD

respectively. Therefore, we can write

A

, N0/2 + C.(N)
3 o 370

j=1, 2 (6.5)

"

B,
J

where Cj(NO) is a constant which depends on the package size No for

N 08/2 - C.(N)
o jio

specified error probabilities. Following the convention in the litera-
ture (7-13], we assume identical local detectors. Under the above assump-

tion, equation (6.5) can be rewritten as folliows

A = A1=A2 = NOQ/Z + C(No)

(6.6)

B =B =B, =N®8/2 -~ C(N)
o] (o]
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A

= > < }=
Let 1 Pr{TNo(x ) 2 A/Hi} and q Pr{TNo(x ) € B/Hi} for i=0,1.
It follows that

P, = 9, = d)(B/‘/No a) (6.7)
p0=q1=1-¢A/‘1N°c)
where ®(») is the cdf of the unit normal random variable N(0,1). At any

stage of the test, LD #1 computes its own test statistic using only its

current group of observations and performs the following test:

2 A, u1 =1

< = .
TNO(ENO) <B, u, 0 (6.8)

otherwise , u, =1I

1
where u1 denotes the decision of LD #¥1, and I represents indecision in
the three level quantizer. The procedure at LD #2 is identical to that
performed at LD #1. Therefore, the two local decisions are iid discrete

random variables. In particular, the jth local decision uj, j=1,2, under

the hypothesis Hi' i = 0,1, is distributed as follows:

1 , with prob. pi

j=1,2
Li : uj = 0 , with prob. q im0 1 (6.9)
I , with prob. r, !
where £, = 1 - (pi + qi). The GDM observes only the set of incoming

local decisions and combines them according to some fusion rule. The
fusion rule g(ul, uz) must satisfy the monotone property of the global
likelihood ratio (LR) function and admit three different courses of

action (decide H, , H

0 1 or continue). Motivated by the results of the

previous chapter, we propose to use the following symmetric fusion rule

which satisfies the above requirements
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u,=u =] , stop and decide Hl

2
A u.=u_=0 , stop and decide Hy
u_ = g(u,u,) 12 . . (6.10)
g 1772 otherwise, discard all previous

local decisions and continue,

where ug denotes the global (final) decisien.
The probability of error of the first kind, @, can be computed by sum-

ming the probabilities of deciding H, at all stages when H, is the true

0

hypothesis. The successive stages are identically distributed each with

1

the probability of a hypothesis decision (deciding either H, or Hl)

0
equal to (pz + qs) and a probability of continue equal to 1 - (pg+ qg).

Therefore, we can write

o0
a = E—Pr{ug=ﬂ1 at the kth stage/H0 is true}ePr{the kth stage is reached}.
k=1

Simplifying, we obtain

= k-1 Py 9
a=) pill -p% + )] " == — =3 5 (6.11)
= 0 oo Py * 9y Py * 9
Let Pr(e) be defined as the average probability of error, i.e.,
Pr{e) = o Pr{Ho is true} + B Pr{Hl is true}
Since a=B, it follows that Pr(e) = a = ﬁ, and the probability of correct

decision is 1 - Pr(e) = [q%/(pg + qg)]. Inspecting (6.11) closely, we

. c - A
observe that in order to minimize a = Pr(e) and maximize PD = 1-B=1-Pr(e)

simultaneously, we must minimize their ratio, i.e., (po/qo)2 = (po/pl)z.
Similarly, we can minimize B and maximize (1-a) = 1-Pr(e) simultaneously
by minimizing the ratio (ql/qo)z. However, the quantity (po/pl)z or

equivalently (po/pl) is minimized in the region Rl of the local observa-

tion space such that the local LR is maximum. Similarly the quantity

(qllqo)z or equivalently (ql/qo) is minimized in the region RO of the
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local observation space where the local LR is minimum. Because the local
decisicns are ternary by definition, it follows that RI i3 the remainder
of the observation space as shown in Fig. 6.2. Therefore, we conclude
that an optimal local test must necessarily be a likelihood ratio test
that partitions the observation space into three mutually exclusive

regions R, R

o' Rys and Rl such that LR(RO) < LR(RI) < LR(Rl). When the
observation falls in Ri' i =0, I, 1, the corresponding local decision is
up = i; £ = 1,2. The independence assumption implies that the joint LR
function is the product of the local likelihood ratios LR1 and LR2 at LD
#1 and LD #2 respectively. Moreover, the global decision maker observes
only the set of incoming local decisions. Therefore, we conclude that
the optimal global test (fusion rule) is a LR test performed on the set
of local decisions as given by (6.10). At this stage, it should be
emphasized that because the observations are normal, the tests in (6.5)

and (6.6) are likelihood ratio tests, and hence, they are optimal.

Returning to equation (6.11), we observe that when Hl is the true

hypothesis, the probability that the global test will terminate at the

kth stage (k 2 1) is given by (1 - (pi + qzi)]k-l

2 2

+ .
(pi qi) Therefore,
the average sample number (ASN) is the same under both hypotheses and is

given by
oo k-1 N
= - 2 2 - 2 2y =
ASN = N_ ) k{1l - (B +a]" " (ph+ @)

— (6.12)
k=1 Py *9,)

It is clear from (6.11) that pg < @, or equivalently p, < Vo for any

value of o. Moreover, (6.11) can be written as follows:

Py = Ja/ (1-a) q, = Yo/ (1-a) Py (6.13)




= N N

LR(R< LR(Rp <LR(R))

Fig. 6.2 : Partitioning of the jth local observation space

to minimize error probabilities.
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i S i S S S S

For any value of Pyr the package size No is [21] given by

I P P -1 Py 2
No= () (0" py) + @ o/ (1-a) po] (6.14)
or equivalently
= (ot Z - ¢! 2
N = @2 (¢ to/(Tmap) - & ip) (6.15)

where ¢;1 () is the inverse of ®(-). Substituting for NO from (6.15) in
(6.12), we obtain

= S 2 1 Y _ -l 2,2
N = a@? (07 Ga/-op) - ¢ p))2/p  (6.16)

The package size NO is a monotonically increasing function of po and there-
fore, for each value of N0 there exists a unique value of p0 that will
satisfy the error probabilities. To show that, «~e differentiate (6.15)

with respect to P, to obtain

9 _ 5 G2 (! Z - ot
B, 2 (g (¢ or(1-0) Py~ @ (po))
(6.17)
(V(l—a)/a . L .

¢[¢fl(4(1-a)/a Py ) ¢[471(p0)l)

where ¢ is the unit normal density function. The term [¢71 V(i1-0) /& Py -
-1 —_ ,

Lo} (po)] is positive because V(1-a) /o po > p0 for values of o of interest
(ax < 0.5). Rewriting (6.17), we obtain

1

dN S
E;i = {2 (%)2 (¢f o/ (1-@) pg- ¢r1(P0))} / {¢[¢{1(p0)]} *

o0 (py))
- 1}

{Va/(l-a) . T
0@ " (V(1-a) /a Py) ]

(6.18)
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The first term on the right hand side of (6.18) is positive because the
numerator and denominator are both positive. The term ¢[¢r1(po)]/

¢[¢;1 JTI?&77E po)] is recognized as the inverse of the LR fuaction at

the upper thresheld A. The LR function is strictly monotonically increas-

ing function of its argument. Therefore, it follows that

> - —
LA PI{TNo@NO) 2 AMH ) e (Wi va py) ]
b Pr{T, (x.) = A/H} -1 (6.19)
Po  FRify Xy ) 2 A/, 01D " (py))
o o
From (6.13), we have p /p; = vY(1-a) /a , and thus
-1
— o (D (po)]
Yo/ (1-a) T ——— -1>0 (6.20)
[P " (V(1-a) /a Py ]
dNO
We conclude from (6.20) and (6.18) that a;— is strictly positive for all
0

po < a. Consequently NO is a monotonically increasing function of po. The
ASN as given in (6.16) is also a function of Py which can be written

simply as follows

GNO
ASN = —— (6.21)
P

0
It is clear that an optimal choice of the package size No or equivalently
Pqy will minimize the ASN., Let NS and pa be the optimal package size and

its corresponding value of Py~ Differentiating (6.21) with respect to Py

and setting the result equal to zero, we obtain

—— - =0 (6.22)

Solving (6.22), we obtain the optimal package size N;. However, an

analytical solution for N; does not appear to be feasible, and one needs

to consider numerical search. In ([21], it was shown numerically, that for




=2
< < 1} 3 [} + [}
10 € a €10 , the choice No NFSS/3 is nearly optimal, where NFSS is

the number of observations required by the optimal FSS detector to satisfy
the same error rates. In our case, since twc local detectors are being

used, we can restrict the numerical search to the set of integers NFSS/6 <

N /3. The upper limit N Ss/3 represents the case when the

<N
o} FSS F

decentralized system is equivalent to one detector (no gain in
performance), while the lower limit NFSS/G represents the case when the

decentralized system is equivalent to the centralized case (transmission

of the analog observations).

6.3. The Modified Sequential Test for M-ary Hypothesis Testing

Once again we consider the distributed system shown in Fig. 6.1. The
observations are as defined in the previous section except that there are
M equally probable hypotheses. In particular, the observation model is

as follows:

»
fi

k0 + n,
H i21; k=20,1,...,M-1 (6.23)
k6 + n,

<
]

where kB is the constant signal component under the hypothesis Hk and n,

is as defined earlier. The local test procedures are identical, there-
fore, we describe only the test procedure at LD #1. At any stage of the
test, a package of No observations is taken and a sufficient statistic

TN (§N )is computed. Let the pdf of the test statistic TN (EN ) be
o © o o

denoted by f(t/Hk) when H  is the true hypothesis. The local teast is

k

obtained by generalizing the test for the binary hypotheses case as given

by (6.8). It 1s xnown ({34] that for the general case, where the

M(M-1)

hypotheses are not ordered, we require a set of >

pairwise likelihood

ratio tests. However, the hypotheses in (6.23) are ordered and, there-

98



fore, we need to test between adjacent hypotheses only. The resulting

test can be summarized as follows: accept the hypothesis H, if both of

k
the following two likelihood ratio tests,
A ﬁ(t/Hk+l) { > T, t-l . accept H__,
Ak%l f(t/Hk) €T, = , accept Hk
(6.24)
A f(t/Hk) { 21T = 1_1 , accept H_
Ak f(t/Hk_l) < 12 =1 , accept Hk-l

lead to the acceptance of H The choice of the thresholds in (6.24) 1is

K
intended to maintain the symmetry of the locidl test, i.e., the local test

weighs all the hypotheses equally. Let ak and Bk be the probabilities of

deciding Hk+1 and Hk—l respectively, when Hk is the true hypothesis.
It is clear from (6.23) and (6.24) that uk and Bk are the same for all
values of k and that ak = Bk is maintained. For sufficiently small

values of the average error probability, we can neglect the errors that
can occur between nonadjacent hypotheses. 1In this case, it can be shown
that the test in (6.24) is optimal and indeed minimizes the local average
probability of error. Observe that the thresholds in (6.24) are dif-
ferent from those in [27]. The test in [27] uses thresholds that are
identical to those of the sequential test in (25,26} and, therefore, they
are not necessarily optimal. Simplifying equation (6.24), we arrive at

the following equivalent tests

N No(2k+1)9
0 2 —— + (N ) , accept H
T, (xy ) &y x, No(zﬁﬂ)e ° K+l
o o) i=1 < - - E(No) , accept Hk
{6.25)
N (2k-1)0
N [e} ~
0o 2 ———— + C(N_) , accept H
A k
T x, ) = Y x N _(2k-1)0
N —N 1 [o] ~
o) o i=1 < - - (N ) , accept Hk-l
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From (6.25), it is clear that the local test is simply to determine the

region of the observation space in which Ty (z ) falls and decide
o o©
= 1 i . = -1
Hk(u1 k) if TNO(ENO) € Rk' The regions Rk' k=0,1,...,M-1, are as

summarized below:

R, = [N kB -c, NkO +c] i k=1,2,...,M-1

Ry = (== ¢l (6.26)
Ry, = [(M-1) NOG -c, =

e kel = (kN + c, (k#1)N B -c) ; Kk =1,2,...,M2

where ¢ = NOG/Z - E(NO) is a real number whose value depends on No and
satisfies c £ N09/2. We define the indecision region I to be the union

of all indecision regions I k=0,1,...,M-2. Let e(j,2) be the

K, k+1°

probability that TN (x ) € R, when H, is the true hypothesis, i.e.
o

N0 j 2

e(j,R) = Pr{ul = j/Hz} j, & = 0,1,...,M-1 (6.27)
For small error probabilities, it follows that
e(j,3) > e(j,j-1) = e(3j-1,3) >> e(3,j-2) = e(j-2,3) >> ... (6.28)

which states that if an error occurs, it is most likely to occur between
adjacent hypotheses. A straightforward generalization of the fusion rule

given by (6.10) leads to the following symmetric fusion rule

ul=u2=k p stop and decide Hk
u é (u,,u.) (6.29)
g EARS LA otherwise, discard all previous :

stages and continue.
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From (6.29), it follows that the probability of error when H, is true is

k
given by
M-1 M-1
Prie/H) = §~ ez(j,k)/._y— e? (5,k) k =0,1,...,M-1 (6.30)
3=0 =0
j#k
M-1
where 5_ e?(j, k) is the probability of obtaining two idetical local
=0

decisions at any stage. Neglecting all errors between nonadjacent
hypotheses, we can approximate Pr(e/Hk) for a middle hypothesis by

~

Pr(e/H ) * 2e? (k-1,k) /{e® (k,k) + 2e®(k-1,k)}, k=1,2,...,M-2 (6.31)

and for the end hypotheses H, and H we can write

0 M-1'

Pr(e/Hy) = Pr(e/H, ) % e®(1,0)/{e’(0,0) + e’ (1,0)} (6.32)

Equations (6.31) and (€.32), show that the error probability for a middle
hypothesis is approximately twice that of a boundary hypothesis which is
in agreement with the results of centralized detection under the same
criterion (27].

The test procedure described above is clearly memoryless because the
local decis.ons are ignored if a hypothesis decision is rot reached. De-
noting by PT(k) the probability of global test termination at any stage
provided that it has not terminated at any prior stage and H, is the true

k
hypothesis. It follows that

(o)

P (k) = e’ (j,k) ,

TR

(=]

which can be approximated as follows:
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e? (k,k) + 2e? (k-1,k) , k=1,2,...,M-2
By (k) 2 e?(0,0) + e?(1,0) , k=0 (6.33)
e? (M~1,M-1) + e? (M-2,M-1) , k=M-1
From (6.33), the average number of observations ASN(k) required for termi-
nation when Hk is true can be easily derived. The derivation is similar
to the binary hypothesis case and the result is given by
ASN (k) = NO/PT(k) (6.34)

The average error probability Pr{e) and the average sample number ASN

can be derived hy averaging Pr(e/Hk) and ASN(k) respectively to obtain

M-1 M-1
. 1
Pr(e) = z: Pr{Hk is true} e Pr(e/Hk) =3 E: Pr(e/Hk) (6.35)
k=0 k=0
M-1 No M-1 1
ASN = z: Pr{ﬂk is true} e ASN(k) = o E: P (K) (6.36)
k=0 k=0 T

As in the binary hypothesis case, it seems that we cannot find the
optimal package size Ns analytically and numerical techniques must be
considered. However, it can be shown that PT(k) is a monotonically
increasing function of No. Therefore, given the value of Pr(e), we can
find the optimal package size N; bv keeping Pr(e) fixed while minimizing
ASN over the set of possible package sizes. As is evident from the
numerical results obtained, the optimal package size is less than NFSS/4
for Pr(e) S 10-6. Moreover, the ASN does not change considerably as a

result of small variations in the package size, i.e., the ASN is a

relatively flat concave function of No'

6.4. Truncation of the Test Procedure

As was pointed out in Sections 6.2 and 6.3, the number of observation
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packages necessary for the termination of the global test is a geometri-
cally distributed random variable. Therefore, the GDM will reach a deci-
sion in a finite number of trials (packages). However, the GDM may re-
quire an excessively large number of trials before a decision is reached.
In other words, the number of trials required is an unbounded random
variable. To avoid such undesirable situatinn, a reasonable truncation
scheme is usually necessary. The analysis of the truncation problem
associated with Wald's SPRT is difficult (31-33] and either approximate
expressions or bounds are available for both the error probabilities and
the ASN. The truncation problem for the generalized SPRT in (25] iz even
more difficult and no truncation analysis is reported. For the
memoryless sequential procedures under consideration, the exact distribu-
tion of the global test duration given the hypotheses is known and
simple. Therefore, the resulting truncation problem is simpler to
analyze. 1In this section, we propose a truncation scheme and analyze its
performance for the decentralized binary hypothesis testing problem. The
M hypotheses case can be treated similarly.

The proposed truncation scheme can ke described as follows: At any

stage k(k S m), a package of No observations is taken at each LD. The

N N
e} (o} o

pared with the thresholds A* and B*, where A* > A and B* < B (see

resulting local sufficient statistics T,_ (x_ ) and Ty (¥ ) are com-

definitions of A and B in equation (6.6)). The monotonicity of the LR
funciion of the sufficient statistics guarantees lower error proba-

bilities than a and B. The global test is carried out sequentially in
the usual manner. If no decision is reached up to the mth stage, each
local detectour is allowed to take one more package of No observations.

The choice of equal package sizes at all stages is necessary only to
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simplify the implementation of the test. At the truncation stage, the
local test statistics are computed and single threshold tests are

performed as follows:

u1=1
T, (%) 2 ¢t
No No u1=0
(6.37)
u,=1
2
T, (y,) 2t
No No u2=0

where uj = i means that the jth, j=1,2, local decision is in favor of Hi'
i=0,1. The fusion rules possible at the truncation stage are AND and CR
rules. The symmetry of the problem implies that these fusion rules have

identical performance at O, and BT' where o

o and BT are the error proba-

bilities at the truncation stage with a, = BT > a =pB. We assume the AND

fusion rule here, therefore, the global decision ug is Hl if and only if

u, =u, = 1 and ug is HO otherwise. Consequently, we may write

= = o2 = - —t 32
aT al . a2 uz {1 d ( e 0)}
)

and
Noe-t

~ E ] - - = - 2:
1BT (1 Bl)- (1 Bz) (1 Bz’ ¥ |

—)

VN o

(o}

Equating @, and BT, it follows that the threshold t in (6.37) is the

unique solution of the equation
{1 - &

—)}? =1 - ¢ (——) (6.38)

Similarly, in the case of an OR fusion rule, it can be easily shown that

the threshold t' is the unique solution of the equation
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NGO -¢!'

} t
1 - & (——) = {1 - & (2—)}? (6.39)
| VN o VW o
| o o
Let Vﬁ;é-t' = t, we obtain
NOO -t ¢
1 - (—) ={1 - & (——)}* (6.40)
N o N, ©
o)
which is the same as equation (6.38). Therefore, we conclude that the

performance of the AND and OR fusion rules is the same and that their
thresholds are related by

£, = #ﬁ;e -t (6.41)
where to and ta are the thresholds associated with the OR and AND fusion
rules at o, = BT respectively.

The expressions of the global error probabilities a and 6 for the pro-

posed truncation scheme are obtained by averaging their values at all
stages as follows:

a=0=qa*xe Pr{Tg < mNo/Ho} + o Pr{Tg > mNO/HO} (6.42)

T
where Tg denotes the global test duration. Equation (6.42) can be
written as

a=f = ar{1 - (l—paz-piz)m] +a

k2 g2 0
7 (1 pa p{ ] (6.43a)

a@=f =ar+ (@ -ax) + [1-p62-p12}m (6.43b)

from which it is obvious that by increasing m, the coefficient of (aT-a*)

decreases monotonically. Consequently, there exists an integer m such

that a = § s a = B.




The ASN of the truncated sequential procedure, denoted by ASNT, has

the same value under both hypotheses given by

m
T k-1
ASN' = N_ Y ki - pE? - pr) 1 4 (1 - pr? - px?) (6.44)
k=0
Simplifying equation (6.44), we obtain

1 - (1 - psz_piz)m

ASNT = N_ (6.45)

(pg® + p3)
where m is the truncation stage. From (6.45), it is evident that ASNT
depends on the choice of No as well as the thresholds A* and B*, The
optimization of the package size No for a given A* and B* is simple and
can be done in the same way used for the untruncated test. On the other
hand, if we fix the package size No, then an optimal choice of A* and B*
is not simple due to the continuous nature of the variables A* and B*.
The minimization of ASNT requires an optimal choice of both No ard the
thresholds A* and B*, which is not easy to accomplish. However, it
should be emphasized that the superiority of the sequential test
procedure over the optimal FSS test procedure implies that the truncated
sequential procedure must have a higher average sample number than its
untruncated counterpart, i.e., ASNT > ASN. This is so because the
truncated test is actually a mixture of both the sequential and FSS test
procedures. Consequently, a reasonable truncated sequential procedure is

. T . .
obtained when ASN™ £ ASN as demonstrated in the numerical results.

6.5. Numerical Results

In this section, we present some of the numerical results obtained.
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The observation model for the binary hypothesis case is as given by (6.1)
with 8 = 0.2 and ¢®> = 1. We denote by NFSSl and NFSSZ the number of
observations required by the optimal fixed-sample-size distributed system
consisting of one and two local detectors respectively. Similarly, we
denote by ASNl and ASN2 the average number of cobservations required for
the termination ¢f the global test when one and two local detectors are
employed respectively. The numerical results obtained for different
values of error probabilities are summarized in Table 6.1. These results
indicate that for small values of error probabilities (o=f), our distri-
buted sequential procedure is far more efficient than the distributed FS$S

system and that its efficiency (ASN2/N ) improves monotonically as

FSS2
the error probabilities decrease. Moreover, our distributed procedure
requires less than 60% of the ASN required by the Lee~Thomas (21] MLGDS
procedure.

The observation model for the M hypotheses case is as given by
(6.23) with 6 = 0.2, 6> =1, and M = 10. In Table 6.2, E(n) denotes
trhe average sample number of the sequential test in [25}. The
numerical results obtained for some values of the error probability are
given in Table 6.2. From these results, it is evident that the
increase in the ASN due to both grouping of the observations and the
memroyless nature of the test procedure is less than 25% of E(n).
Moreover, the distributed system requires approximately 60% c¢f the
average numker of observations (ASNl) required for the termination of
the single sensor s3cheme in {27], which is quite an interesting resuilt
knowing that the centralized processing necessarily requires 50% of
ASNl.

Finally, the proposed truncation scheme is applied to the binary
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hypothesis case with the same parameters used in obtaining Tables 6.1.

The optimization is performed by first choosing slightly smaller values
of a* and B* (a*x = B*) than the specified values of o and B (a=Bf). The
package size No is then varied while adjusting the thresholds A* and B*

such that a* and B* are fixed for all values of No. The resulting ASNg

is calculated for all values of No and the minimization is obtained by

. . . T
selecting the package size that yields the minimum 2f ASN

2" In Table

6.3, we give the values of a*, «a_, a, the termination stage, ASN and

T M

ASNT for some values of a and B. Comparing the values of ASNT

2 and ASN_,

2 2

we observe that they are almost equal for all values of a and B (o=B).

The maximum difference & 4 ASNg - ASN, is obtained for a=B=10—6 and is

equal to 2.2 observations, which corresponds to a percentage increase

(5/ASN2) X 100% % 0.37%.
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Table 6.1. Results for the binary hypotheses case, 0=0.2, c’=1.

=B Nessi Mepsso ASNl ASN, ASNl/NFSSl ASN?_/NFssz ASNZ/ASNl
107% 1383 967 664.2  405.7 0.48 0.42 0.611
107 2259 1593 993.5 598 0.44 0.375 0.602
107 3149 2231 1310.5 7806.1 0.416 0.35 0.595
10720 4046 2875  1619.8  955.3 0.4 0.332 0.59
10712 4948 3529 1922.7 1125.8 0.39 0.32 0.585
1072 5853 4183 2220.8 1295.1 0.38 0.31 0.583

Table 6.2. Results for the M hypotheses cases, M=10, 6=0.2 and o’=1.

Pr(e) ASN ASN E(n) ASNl/N

Ness1 1 2 ASN, /E(n) ASN,/ASN

FSs1 1
107" 1494 823 511.6  666.5 0.551 1.235  0.622
1078 2373 1162.1 711.1  934.3 0.49  1.244  0.612
1078 3264  1489.8 899.2  2296.4 0.546 1.245  0.604
1071% 4162 1806.0  1080.7 1454.8 0.43¢ 1.241  0.598
10712 5064  2115.8  1255.8  1710.6 0.418 1.237  0.594
1072 5969 2420.3  2427.2  1964.4 0.405 1.232  0.589
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Table 6.3. Results of the proposed truncation scheme, M=2,0=0.2

and g?=1.
- = Truncation T
ax=px a, = Br a=f Stage m ASN, ASN,
-5 -2 -4 .
9.5X10 1.755%10 0.996X10 6 405.7 406.8
-7 -3 -6
9.473x10 4.05x10 0.988x10 7 598 600.2
-9 -3 -8
9.591x10 1.22x10 0.99%10 9 780.1 781.5
9.573x10 Y 3.s55%x107% 0.967x10" 0 11 955.3 957.1
9.534x20 2 1.08x107" 0.971x10 12 12 1125.8 1128.2
9.478x10 1> 3.83x107° 0.966x10 1Y 14 1295.1  1296.8

6.6 Discussion

In this chapter, we have extended the results of Lee and Thomas (21]
to a distributed system consisting of two local detectors. The resulting
sequential procedure exhibits the simplicity of the FSS test procedures
while maintaining the performance superiority of the sequential pro-
cedures as is clear from Table 6.1. In addition, we have considered the
case of M hypotheses without increasing the complexity of the test over
the binary hypothesis case. The numerical results obtained for M
hypotheses show clearly a substantial saving in the average sample number
at the local level as a result of decentralization. Consequently, on the
average, the decision (detection) process is much faster. The numerical
results obtained for the truncation scheme indicate that its effect on the
average sample number is very insignificant. Therefore, the test is

practically realizable in the sense that its duraticn is bounded. Fin-
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ally, it is worth mentioning that the distributed system can be gener-

alized to have more than two local detectors and different fusion rules.
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CHAPTER SEVEN
NONPARAMETRIC SEQUENTIAL DETECTION BASED
ON MULTISENSOR DATA

7.1. Introduction

Several attempts have been made in the literature to combine the
desirable properties of nonparametric fixed-sample-size (FSS) tests and
the advantages of sequential tests. The Kassam-Thomas dead zone limiter
(DZL) (35) is a generalization of the classical FSS nonparametric sign
detector (36,37). The DZL in [35] exhibits performance superiority over
the FSS sign detector. This performance gain is achieved at the expense
of additional implementation complexity. A read-only-memory (ROM) is
required for the implementation of the test in [35]. For small values of
error probabilities o and B, where a is the probability of error of the
first kind and B is the probability of error of the second kind, the size
of the ROM rzquired is large and hence, the complexity increases as o and
P decrease. The performance of the D2L in (35] has been further improved
by Shin and Kassam [22] by means of sequential testing. The sequential
test in ([22) callied conditional sequential D2L is similar to the
sequentia. probability ratio test (SPRT) of Wald [1], and it requires ROM
accessing and a two threshold test after each individual observation.
This greatly increases the complexity of the test. This added complexity
mo.ivated Tantaratana and Poor (24) to consider a two-~ stage vers.on of
the conditional sequential D2L test in [22] to reduce the implementation
complexity while retaining the performance superiority of the sequential
tests. Tantaratana {23] considered the formulatinn of the conditional
sequential DZL in [22] as a simple random walk between two fixed absorb-

ing boundaries. His formulation does not require the table iook-up oper-
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ation and, therefore, the implementation of the test is much simpler. The
restriction of the random walk formulation to the simple case in which the
positive step is equal to the magnitude of the negative step is not
suitable and leads to undesirable increase in the average sample numbers
(ASN'S). 1In fact, it can be easily shown from the theory of random walk
[29] that for small number of states as in (23], a truncation is neces-
sary to limit a from becoming much larger than its prespecified value.
However, the truncation scheme in [23] is based on the number of
observations whose magnitude is larger than a fixed real number.
Therefore, the truncation in [23] has no effect on limiting the actual
number of observations from being excessively large. Moreover, it should
be mentioned that if no truncation is employed, then the simple random
walk formulation (29]) requires a large number of states thereby leading to
a substantial increase in the average number of observtions required for
the test termination under both hypotheses.

In this chapter, we show that the conditional sequential DZL in [22)
can be implemented without the need for the table look-up operation. In
other words, we can sequentially test against two fixed thresholds which
can be chosen prior to the test. The threshold design is the same as that
of the SPRT (l]. In Section 7.3, we study the formulation of the test as
a random walk without a restriction on the steps to be equal. In Section
7.4, we generalize the nonparametric sequential sign test to a distributed
system consisting of two local sensors and a global decision maker as
shown in Fig. 7.1. 1In Section 7.5, we derive a conditional sequential D2ZL
detector for the distributed system in Fig. 7.1. It is shown that if the
observations are spatially independent and have identical distributions,

and that no excess over the thresholds is assumed, the resulting tests
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Local Sensor #1

Local Sensor #2

Fig. 7.1: A distributed system consisting of two local sensors

Global

Decision
Maker

Ug

followed by two local quantizers and a global decision maker.
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require half the number of observations required for the single detector
in [22]. 1In Section 7.6, we present a numerical example for the
nonparametric sequential sign test. Finally, in Section 7.7, we conclude

the chapter with a discussion of the results obtained.

7.2. The Nonparametric Sequential Sign and Conditional Sign Tests

Consider the problem of detecting a constant signal 6 corrupted by an
additive noise. The noise pdf is assumed to be symmetric, continuous, and
with zero mean. Let Xl’ X2,... be a sequence of iid ramdom variables

which represent the successive observations. This detection problem is a

problem of testing the null hypothesis H., against the location alternative

0
Hl, where
HO : X, o £(x)
(7.1)
T X, . - >
Hl xl f(x-6) , 6 0
with £(x) = £(-x). We denote by xl, x2 ;... @ realization of the obser-
vations X X Let x 4 [x, x x1b vector of observations
RS IEREE X 1 Xp oee X e a o er o)

of size n.
The sequential sign test in [36] is a SPRT performed on the sign of
the observations. Each observaticn X, (i 2 1) is passed through a hard

limiter whose output is given by

+1 if X, 20
Y, = (7.2)
i
-1 if x, < 0
1
Let
Pg = Pr(Y, = +1/8) =1 - F(-0) (7.3a)




qq = Pr(Y, = - 1/8) = F(-8) (7.3b)

X

where F(x) = J f(t)dt. It follows that for any pdf f(x) as defined
-00
earlier, the hypothesis testing problem is now given by
HO I S B(pe = 1/2)

(7.4)
Hl : Yi ~ B(pe > 1/2)
where B(p) is a Bernoulli random variable with probability of success
(Yi=+1) equal to p, and probability of failure (Yi= -1l) equal to l-p=q.
When HO(O = 0) is the true hypothesis, the distribution of the quantized
observations is invariant in the class C of continuous, symmetric, and
zero mean pdf's. It follows that a SPRT based on Yi's is nonparametric

(36), in the sense that it has a fixed a for any X €C. Following Wald

{1}, the SPRT based on the Yi's is as follows.

0 J 2 log (1-f)/a g log t decide H)
F— z, < log B/ (1-a) 4 log t, , decide H (7.5)
i l £ 0
i=1 . .
otherwise, continue.
f(y./H.)
where Zi = log ET;Z7§;7 p f(yi/Hj) is the probability density function of

the discrete random variable Yi when the hypothesis Hj,j=0,1, is true, and
tu and tz are the apper and lower thresholds respectively. Let np be the
number of positive observations at stage n, and let ﬁe be an estimate of
pe which we use in designing the test. The random variable Zi in (7.5)
assumes the value log(ﬁe/(l/Z)) when Yi=+1 and the value log((l-ﬁe)/(l/Z))
when Y, = -1. Therefore, equation (7.5) can be written explicitly as

2 log tu , decide Hl

np log(2pe) + (n-np) log 2(1—§e) < log tz , decide H (7.6)

0
otherwise, continue.
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where np is the number of observations such that Yi igs positive and n is
the total number of observations taken so far. Neglecting any excess
over the test thresholds upon termination., The average sample number
(ASNe), defined as the average number of observations required for

termination when 8 is the true parameter is approximated {1] by

L(6) log t:Z + [1-L(9)]log t
~ u

ASNe 2 E[Zi/O] (7.7)

where L(0) is the operating characteristic (OC) function of the test, and
1-L(8) is the power function of the test. To obtain L(0), we solve the

parametric equation

[ f(yi/Hl)]
5 f(yi/Ho)

i

h(8)
f(yi/e) =1 (7.8)

where the summation is over all possible values of Y and f(yi/e) is the
pdf when O is the true parameter. Wald [1] has shown that h(0) is unique

and that L(8) is given in terms of h(8) by

cﬂ‘e’ -1

L(8) h(0)  _h(0) (7.9)
t -t
u £

In our particular case, the random variable Yi assumes the values * 1
only. Therefore, we can write equation (7.8) as follows:

~ h(8) ~ 1, h(8)
pe(Zpe) + qe(2(l Bg)) 1 (7.10)
where Py = Pr[Yi = 1/8) and 9 = l-pe. From the definition of z, in (7.59),

it is clear that E[Zi/e)] is given by
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E[zi/e)) =Py * log 2§e + 9 log 2(1-59) (7.11)
when H, is true (0=0), it follows that Py =9y = 1/2. Therefore, h(0)=1
and L(0)=1-a. Similarly, when pe = 59 (our estimated value), it follows
that h(f) = -1 and L(§) = B, which means that the power of the test is
1-f as required.

The conditional sequential DZL detector is similar to the sequential

sign detector. The only difference is that it employs the following DZL

quantizer
+1, if x, > ¢
i
Y, = 0, if -c € x, £ c (7.12)
i i
Let -1, elsewhere
Pg = Pr(Yi =+ 1/8) = 1 - F{c-0) (7.13a)
9 = Pr(Yi = - 1/8) = F(-c-6) (7.13b)
ty = Pr(Yi =0/0) =1 - Py ~ 94 (7.13c)
When HO is tr e, (0=0), it follows that Py = 9 for all X €eC. However,

the actual value of po depends on f(x) as given by (7.13a). In order to
obtain a nonparametric test we must base our test on a random variable
whose distribution is invariant to f(x) when H, is true. Let us define Wi

0

as follows

W = sgn(Y,/Y, =% 1) (7.14)
- 1 1
Clearly, Wi is a random variable defined on the set of observations such

that Yi = * 1. Given that an observation Yi is in that set, the con-

ditional distribution of wi given the hypothesis is as follows
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. | -
HO : Wi ~ B(po 1/2)

(7.19)

. 1
H) @ W, . B(p) > 1/2)

where pe=pe/(p9+qe). When Ho is true (8=0), it is clear that po/(po+q0)

1/2 and consequently, the test based on Wi is nonparametric. The SPRT

based on Wi's is similar to the sign test, the only difference is that when

Y,
i

0, the observation is ignored. Let m be the number of observations
of Wi, i.e., m is the number of observations such that Yi =% 1, 1It

follows that the ASNe expressed in terms of m is-given by (1]

L(8) log ty * (1-L(8)])log tu
ASNe(m) = E[Zi/G] (7.16)
f(wi/H )
where 2, = log ————— , and L(8) is computed using (7.7) and (7.9)
i f(wi/Ho)

after replacing ' with W, Observe that the observations Yi = 0 have no
effect on the power of the test simply because they are not included in
the computation. However, those observations have a major effect on the
ASNe when computed on the actual (unconditional) observations. Observe
that ASNe(m) is the average sample number conditioned on the event Yi=i1.

To derive the actual average sample number ASN we observe that the

9’
event Yi=i1 has a probability of occurrence equal to (pe + qe) for any
individual observation. Therefore, for any vlue of ASNe(m), say k, the
distribution of the actual number of observations N is the Pascal (nega-
tive binomial) distribution as given by

n-1
_ _ - k o n-k -
Pr(N—n/ASNe(m)—k) [ -1 ] (p9+qe) (1 Py qe) , n=k,k+1l... (7.17)
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The actual average sample number ASN9 is obtained by averaging over all

possible values of N. The result is known and is given by

ASNe(m)

N, = ———— 7.18
ASG (pe+qe) ( )

7.3. Random Walk Formulation of the Tests

Both the nonparametric sequential sign and conditional sign tests de-
scribed in Section 7.2 employ a two-valued discrete random variable for
testing as is evident from (7.4) and (7.15). It follows that these
sequential tests can be easily impleménted as a random walk on a finite
number of states as described in Chapter Two. Tantaratana [24] con-
sidered the case in which the nonparametric sequential conditional sign

test is formulated as a simple random walk on the states § 'S

IARRIEN:

as shown in Fig. 7.2. The states S0 and SN are absorbing states with

associated decisions H, and H, respectively. The states §

0 1 S

S

0’ 1/ °""°"'"N-1

are all transient with an associated decision of continue in an analogy
with Wald's SPRT [1]. Initially, the process starts at state Sz, 0<2Z<N,
and it goes one step higher (At = 1) if the current observation is posi-
tive and one step lower (AT = 1) if the observation is negative. As soon

as the process reaches one of the absorbing states S, or SN, the test

0
terminates with the acceptance of the hypothesis associated with that
state. The results for equal step random walk [29] can be used in con-

junction with the observation model of (7.4) and (7.15). It is well

known [29] that for a process starting at SZ’ the probability of absorp-

tion in state S0 is given by




Decide Hy

Decide Hl

Fig. 7.2: An (N+1) state random walk process with AT =A" =1
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(q/p)Z - (q/p)N

u, = (7.19)
1 - (q/p)N

where q = Pr{A~} and p = Pr{A*}. Wwhen H, is true, we have qy = p = 1/2,

therefore, we obtain

A1)

o =1-1lim u, =

(7.20)
q/p-1 Z

On the other hand, when Hl is true, we substitute for q and p their

estimated (nominal) values Qe and ﬁe from (7.6), to obtain

. Z . N
) (qe/ﬁe) -(qe/ﬁe)

B

(7.21)
~ ;o N

The random walk formulation of the test requires the specification of both

2 and N such that a and B are satisfied at the nominal parameter values.

However, it is obvious from (7.20) that for Z=1, we must have N-a-l,

therefore, the number of states necessary to satisfy @ is extremely large

for small values of a. On the other hand, for sufficiently large N, we

can neglect the term (ﬁe/ﬁe)N in equation (7.21) to obtain

-3
B (qe/pe) (7.22)

It follows from (7.22) that 2 2 log (B-l)/log(aelﬁe), and thus, Z must be
greater than one, in general, yielding a further increase in the number
(N+1) of required states. Consequently, the average sample number, which
is directly related to N, is very large. To overcome this highly un-

desirable property while still maintaining implementation and analysis
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simplicity, we propose to allow the magnitude of the negative step to be
twice that of the positive step, i.e., A™ = 2, and At = 1 as shown in Fig.
7.3. According to Fig. 7.3, the states SO and S1 are absorbing states and

associated with HO decision while SN is an absorbing state associated with
Hl decision.

Starting the process in state Sj' 1 < j < N, we can express the

probability of absorption in state SN as follows:

= +
%5 PUj41 quj—2

= 7.
uy 1 (7.23)
uo = u1 =0

where uj, 0 < 3 <N, is the probability of absorption in state SN start-
ing from the state Sj and p{g) is the probability of positive (negative)

step. Using the method of particular solutions, we obtain

) 3 3
uj A+ B(xl) + C(xz)

u =1 (7.24)

where A,B, and C are constants to be determined from the boundary condi-

tions u u and u , while x, and x, are the roots of the second order

0" "1’ N 1 2
homogeneous equation

px! - qx -q=0 (7.25)

Solving (7.25), we obtain x1=(q + Vgq? + 4pq)/2p and x2=(q - qu + 4pq) /2p.

Substituting the boundary conditions in (7.24), we obtain “nr j=2 that




Decide H, Decide H,

Fig. 7.3: An (N+1) state random walk process with A* =1 and A™ =2.
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(xl-xz)/(l—xl) - ((1—x2)/(l—x1)) X, + x

(7.26)

™
M Zl-
N Zio N

(XL-XZ)/(l-:L) - ((l-xz)/(l—xl)) x, +x

Let &i, i=0,1,N, denote the probability of absorption in the state s,

starting from the state SZ' Therefore, §N is equal to u, as given by

{(7.26). The probability ¢f absorption in the state S, is obtained by

0

solving the following stochastic difference equation

uj = puj+1 + quj_2

=1 7.27
u0 (7.27)
ul = uN =0

whose solution is similar to that of (7.23) and the result is given by

-1 -1

)-((xz)/(xl))(l-x

-1
)-((xz)/(xl)) (i-x

-1)/(l-x?-1)xz + xz

)Y/ (1-x 1

-~ (7.28)
1)/((1-xf L i

= Z -2
NN ZIN 2

N-1_ N
R

S0~ N-1_N-10 0
1 2

Because the process will ultimately be absorbed in one of the absorbing

states, it follows that

§, =1 -8, - & (7.29)

The average number of steps until absorption when 0 is the actual

parameter is denoted by ASN9 and is given by [30] by

§ éi(l-Z) ) § §i<l-Z)

ASN, =

o ; i=0, 1,N (7.30)

-2 ’

+

- -3
peA qu pe

where Py and qy are as defined in (7.13)
The number of states N+l and the starting point 2 must be chosen such
that when HO is true (pe = 1/2), we have Uy S a and when Hl is true (pe =

ﬁe), we have ﬁN 2 1-f. Although we have so far considered a single
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detector case, our results can be extended to the case of two detectors

in a straightforward manner. The only problem encountered is that the
roots of the stochastic difference equation governing the random walk can
not be obtained analytically and, therefore, numerical solutions must be
considered. Equation (7.17) shows that the actual ASNe is a function of
the pdf of the observations and the parameter of the D2L, which can be de-
signed to satisfy some criterion of optimality [22] without affecting the
nonparametric property of the test. It should be emphasized that the

test is performed sequentially on the set of observations |xi| > ¢ in
exactly the same way the sign test is performed, without any need for the

table look-up as it was originally required by Shin and Kassam in [22].

7.4. Distributed Nonparametric Sequential Sign Test

In this section, we generalize the nonparametric sequential sign test
in [22) to a two-sensor distributed environment. The system is as shown
in Fig. 7.1. It is assumed that the observations at the kth sensor,
k=1,2, are iid random variables with a continuous, symmetric, and zero
mean pdf fk(x). The obkservations are independent from sensor to sensor,

i.e., X,., is independent of X

i1 for all i,f. The detection problem is,

£2

therefore, a hypothesis testing problem in which the hypothesis Ho is

tested versus the hypothesis Hl according to the following model

k=1,2 (7.31)

with fk(x) = fk(-x), and Gk > 0, k=1,2. Each local sensor quantizes its
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own observation into two levels as given by equation (7.2), and
communicates the quantized output to the central detector. The central
detector combines the quantized observations and performs the SPRT. From
the central processor .oint of view, the hypothesis testing problem in
{(7.31) is as follows:

H Y ~ B(L/2)

0 ik
k=1,2 (7.32)
Hl : Yik ~ B(pk)
Let
P, = Pr(Y, =+ 1/ek) =1 - Fk(—ek) (7.33a)
q = Pr(Yik = - 1/9k) =1 - Fk(-ek) (7.33b)
X
where Fk(x) = J fk(t)dt. Observe that for all xkeC, the distribution
Yik is invariant under the hypothesis Ho. Let yi he an observation
vector with Y, and Y,. as elements, i.e.,
il i2
T
Vo= (Y, Y (7.34)

Let f(xi/Hj) be the pdf of yi when Hj’ j=0,1 is true. Then, we have

B,/ = £y /H) 0 £y, /H) 4 70,1 (7.35)

It should be emphasized that the distribution of v, when HO is true is

also invariant to changes in the pdf's of the observations Xi k=1,2 as

k’

long as Xiksc. Consequently the SPRT performed on yi is nonparametric

(constant ). Let yl, 22,... be a sequence of successive central obser-




vations. The SPRT at the central level in [1] as follows:

v

log tu , decide Hl

g decide HO (7.36)

otherwise, continue.

€log t

W~

where Z, 4 log [f(gi/Hl)/f(zi/Ho)]. From (7.36), it follows that

log[f(yik/ﬂl)/f(yik/ﬂo)] (7.37a)
or,
zi = zil + 257 (7.37b)

From (7.37), we observe that
a[zi/el,ezl = E[Zil/ell + E[Zi2/92] (7.38)
Following Wald {1) in assuming no excess over the thresholds at

termination, the ASN(91,92) is given by

L(91,92) log te * [1-L(91,92)] log t

ASN(0_,0.) 2 2 (7.39)
1’72 E[Zi/91'92]

where L(91,92) is the OC function, which is now a function of 91 and 92.
To obtain L(91,92), we need to solve equation (7.9) for h(0) 4 h(91,92)
é h. However, h(61,92) é h is obtained as the unique nonzero solution
of equation (7.8) which can be written explicily in terms of the four

possible values of Zi as follows:

. . .h . . .h . . .h .. h
PP, 14D B, + P9, 148,8,] + qup, 149 B,) + 9\q,14§,3,] =1 (7.40)

o . A - . . S
where By and q = l—pk are the estimated values used in designing the

n

steps of the random process iEl Zi , while pk and q = l—pk are the
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actual parameters. Once h(91,92) is computed, we can solve (7.9) to

obtain L(91,92). From (7.40) we observe when HO is true (91=92=0),

h(0,0) = 1. Therefore, L(0,0) = 1-it as expected. Similarly when

h_,0

61=§1 and 92=§2 (the actual parameters equal to their estimates), then
1
1772

) = Therefore, h(él,éz) = B.
Finally, if the observations Xil and Xiz(i 2 1) are independent and

identical, then equation (7.38) is as follows

E[Zi/91=92] =2 E[Zil/el] (7.41)

Consequently, it follows from (7.41) that for the same power of the test,

the ASN (91,92:91 = 92) is exactly half the ASNe in the case of one

sensor (detector). However, this result is drawn under the assumption of
no excess over the thresholds which is true only for vanishingly small
signal strengths (91=92 Z 0). Moreover, it should be mentioned that when

X,. and X,
1

i , are iid, the computation of the OC function is identical to

the single detector case as given by (7.8).

7.5. Distributed Conditional Sequential Sign Test

We consider generalizing the conditional sequential D2L detector of
Shin and Kassam ([22] to the distributed system of two sensors shown in
Fig. 7.1. _The observations are as defined earlier in Section 7.4. The
only difference from the sign detector is that the quantizers are now
DZL's as defined in (7.12). For clarity, we rewrite (7.12) and (7.13) to

obtain.

+ i >
1, if xik c

Yik = 0, if -¢ < X0 Sc ., k=1,2 (7.42)

-1 , elsewhere
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and

Pox = Pr{Yik = ¢ 1/9k} =1 - Fk(c—ek) (7.43a)
o = Pr{Yik = - 1/9k} = Fk(c-ek) (7.43b)
Yox = Pr{Yik = 0/9k} =1 - Pox ~ Jox {7.43¢c)

When H_ is true 91=0, 8.=0, it is clear that Por = 901 and Poo =

0 2 992

for all X €C, with actual values being functions of the actual pdf's as
is obvious from (7.43). In order to obtain a nonparametric test, we need
to think in terms of conditicnal tests. To this end, we arrange the
observations of the central processor into three groups as follows:

i) Group 1: contains all possible combinations of Yi and Yi such

2

that Yil =% 1 and Yi2 =% 1, In this group, it follows from the

1

independence assumption that

= = = + = =
Pr(Yil upP Yi2 v/Yil + 1 and Yi2 1)
(7.44)
Pr(Yil = T]/Yil =1 1) e Pr(Yi2 = V/Yi2 =1 1)
where 1 = +* 1 andv = % 1. When Ho is the true hypothesis, equation
(7.44) reduces to
Pr(Yil =1, Yi2 = v/Yil =1 1 and Yiz =1 1) = 1/4 (7.45)

for any of the four possible events in the group. Similarly, when Hl is

true, we have

Pr(Yil = 1, Yi2 = V/Yil =% 1 and Yi2 =1 1) =
Pr(Y. = N/H,) Pr(Y,, = V/H.)
- ll~ 1 . i2 1 (7.46)
B *a P+ 4
61 01 p92 02
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where ﬁek and Qek are the estimated values of the parameters pek and qek
as defined in (7.43).

ii) Group 2: contains all possible combinations of Yil and Yi2 such

that one aud only one of them is zero. When Yiz = 0, we obtain

= = = + = = = = +
Pr(Yil n, Yi2 O/Yil * 1 and YiZ 0) Pr(Yil n/!il 1) (7.47)
Similarly, when Yil = 0, we obtain
= = = = + = = = +
Pr(Yil 0, Yi2 v/Yil 0 and Yi2 1) Pr(‘x’i2 V/Yi2 1) (7.48)

It is interesting to observe that when one of the sensors has its observa-
tion in the dead-~zone region i.e. |Xik| < ¢, we obtain the desired condi-
tional distribution by simply not counting that sensor (ignoring its cur-
rent observation). From the results of the single detector case [22],

the test is still nonparametric.

iii) Group 3: contains the observation Yil = Yi2 = 0, which must be
ignored.
From (7.44) -~ (7.48), it follows that the increments by which the

logarithm of the likelihood ratio function is updated depend on the

random variables Yil and Yiz’ When Yil and Yi2 are in group 1, the
increment is a random variable given by
ZPr(Yil = T]/Hl)
Zi = log = = +
P + q
81 61
(7.49)
2Pr(Yi2 = 7/H,)
log when ¥, =7nand ¥, =V
B + g il i2
62 62
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(_________________________________________________________________*ﬁ,
However, when Yil = 0 and Yi2 = Vv, the increment is given by the second
term in (7.49) only, and when Yil = M and Yi2 = 0, the increment is given
by the first term of (7.49) only. Therefore, the observations as seen at
the central level are not identical at all stages of the test. Conse-
quently, it is difficult if not impossible (3} to solve for the
ASN(91,92). Moreover the computation of the OC function is also diffi-
cult, because upon termination we do not know the exact number of usable
observations obtained by any sensor. To overcome this difficulty, we
assume that the observations are identical at both sensors, and propose

to perform the central test by considering Yil first, and then Yi at

2!

all stages (i 2 1). In this case, the OC function is the same as for the
single detector case previously described. The ASNe is given by the

following inequality

1 1 1
= < =
> l’xSNe < ASNe < 2 [ASN

1
0 + 1] (7.50)

1, . .
where ASNe is the average sample number for a single detector when 8 is

the actual parameter.

7.6. Numerical Results

We first present an example of the random walk formulation of the
sequential test discussed in Section 7.3. The nominal observation model
is given by:

H. : X, . N(0, o)
1

H ot X, . N(O, o)
where N(8, 6°) is a Gaussian random variable with mean 6 and variance o¢,

The nominal value of 6 is assumed to be 5 = 0.676 while the variance o7

is assumed to be unity. The quantizer nonlinearity is as given by (7.12)
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with an optimal (22) value of ¢ = 0.6, which yields a nominal value of pé

given by ﬁé = 0.84. Using Wald's approximation to the thresholds, we

obtain
- X l:_@- =1
N-2 1n ( o )/1n 2pe
and
. B, 1 ey
2 2 1n (l_a) / 2 in 2(1 pe)

~

For o =f = 10-3, we obtain N-Z ¥ 13.3 and 2 = 12.12. The actual values
required to satisfy o < 10-3 and B < 10“11 at the nominal value of 8 are
N = 27 and 2 = 12, which are obtained by an exact solution of (7.24).
Presented in Table 7.1 are the numerical values of the power function
PD(G) and the average sample number ASN(0) obtained for some value of 0

in the range 0 < 8 < 8, i.e., 0.5 < Py S By
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Table 7.1: Performance of the sequential DZL detector when implemented

as a random walk

0 pé PD(O) ASN (0)
0.676 0.84 0.99903 45.62
0.619 0.82 0.9974 52.44
0.567 0.8 0.9936 60.95
0.518 0.78 0.985 71.7
0.45 0.75 0.951 93.38
0.348 0.7 0.735 140.33
0.167 0.6 0.0481 91.04
0.1 0.56 0.0094 63.12
0.066 0.54 0.00404 53.96
0.034 0.52 0.00173 46.94
0.0 0.5 0.00073 41.43

Next, we present some numerical results for the nonparametric sequen-
tial sign test described in Section 7.4. The observation model is as

follows:

. 2
HO Xik ~ N(O, Ok)
, 12 1; k=1,2

Hy @ Xy~ MO 00
where N(Gk,oi) is as defined earlier. The nominal design values are
51 = 0.525, 62 = 0.824, and oi = 1, k=1,2. The resulting values of Py

are 591 = 0.7 and 592 = 0.8. The required value of a is set at a = ]0_3,
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while the power of the test is required to be PD(91,92) = 0.999 at the
nominal (estimated) values of the parameters.

In Table 7.2, the parameters pel and Pg2 are varied such that their
aeffects on the power of the test are identical. In other words, the test
has the same power as if it is performed based on the observations of
sensor one alone or senscr two alone. In this case, it is meaningful to
compare the resulting ASN's as given in Table 7.2 below, where ASNe de-

k

notes the ASN considering only the kth sensor cbservations.

Table 7.2. Performance of the distributed nonparametric sequential

sign test.

Py Py, PD(91,92) Asnel ASN92 ASN(91,92)
0.5 0.5 11073 79.07 30.89 22.21
0.5103 0.516 3x1073 87.62 34.23 24.62
0.5309  0.5486 7.89x10 > 111.44  43.64 31.36
0.623 0.6915 0.8 243.18 97.89 69.8
0.6814 0.7753  0.996 103 43.24 30.45
0.7 0.8 0.999 83.77 35.76 25.06
0.744 0.854 0.99997 57.77 25.81 17.84

In Table 7.3, the parameters pel and p62 are allowed to change such
that their effect on the test power is not necessarily the same. We

denote by P k=1,2, the power of the test performed bcsed on the obser

Dk’
vations of the kth sensor alone. Observe that this situation is not en-

countered in the single detector case (22] where we have a single parame-
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ter to deal with. This case is intended to demonstrate the effect of the

parameter changes on the central test power.

Table 7.3. Performance of the distributed nonparametric sequential

sign test with unequal power functions.

Pg1 Pg2 Pp1 Ppo  Pp(9p/8,)  ASNB,,8)
0.65 0.85 0.9633  0.99996  0.9997 22.86
0.75 0.75 0.99998 0.9854  0.9975 27.7
0.7 0.85 0.999  0.999996 0.9999 20.05
0.75 0.8  0.99998 0.999 0.9997 21.75
0.6 0.7  0.515  0.857 0.77 72.18
0.65 0.8  0.9633 0.999 0.9972 29.52

7.7. Discussion

The nonparametric sequential conditional sign test of Shin and Kassam
was investigated and it was shown that it can be implemented without the
table look-up operation as previously required. In addition, the above
test was formulated as a random walk on a finite number of states and
exact analytical expressions were derived for both the test power and
average sample number functions. Both the sequential sign and condi-
tional sign nonparametric tests were generalized to a distributed system
of two sensors and shown to maintain the desired nonparametric property.

It was shown that when the observations of the two sensors are iid, the
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distributed system requires half the number of cbservations required by a
single sensor. Thus, it has the desirable advantage of shorter decision
time in addition to the well known advantages of distributed detection

systems like reliability and survivability.




CHAPTER EIGHT

SUMMARY AND SUGGESTIONS FOR FUTURE RESEARCH

8§.1. Summary

In this report, we have considered some sequential hypothesis
testing problems where the detection network consists of a number of
local sensors and/or detectors. We have studied a centralized SPRT
based on quantized mutlisensor data, and shown its performance
superiority over the single sensor case. Moreover, we have studied the
issues of optimal quantization of local observations, channel errors,
and random walk formulation of the central SPRT,

A simple multi-sensor decentralized sequential detection procedure has
been investigated when no explicit fusion rule is employed. It has been
shown that its performance improves monotonically with the number of local
detectors. ~Next a distributed sequential detection system employing
explicit fusion rule has been considered.

The SPRT of Wald has been generalized to a distributed system
consisting of two local sequential detectors and a global decision maker.
The global error probabilities are derived in terms of the local error
probabilities and the fusion rule employed at the global decision maker.
Moreover, the global ASN is obtained in terms of the loccl test lengths
and the fusion rule. In addition, we have generalized the Lee-Thomas
MLGDS detection procedure to the distributed system described above. The
results obtained in both cases show the performance superiority of these

distributed tests over their single detector counterparts.
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Finally, we have generalized the nonparametric sequential sign and
conditional sequential sign tests of Shin and Kassam to a distributed
system of two local sensors. We have shown that the distributed system
exhibits an improved performance over the single detector case and

maintains the desired nonparametric property.

8.2. Suggestions for Future Research

Throughout this report, we have assumed that the observations are
statistically independent and identically distributed at the local sensors.
However, in practice, the observations can be dependent both spatially and
temporally. Therefore, one fruitful area for research is to develop
suitable sequential detection schemes under the appropriate dependent
observation models.

Another possibility is to investigate sequential detection schemes for
different network structures such as serial and tree topologies.
Appropriate fusion schemes should be developed and system performance

should be evaluated.
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